Skip to main content
Log in

Stimulation of Biological Function With Bioactive Glass

  • New Functionality in Glass
  • Published:
MRS Bulletin Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. Praemer, S. Furner, and S.D. Rice, Musculoskeletal Conditions in the United States (American Academy of Orthopedic Surgery, Park Ridge, IL, 1992).

    Google Scholar 

  2. R. Geesink, K. de Groot, and C. Klein, “Bondingof Bone to Apatite-Coated Implants,” J. Bone Int. Surg. 70B (1988) p. 17.

    Article  Google Scholar 

  3. D.E. Day and T.E. Day, “Radiotherapy Glasses,” in An Introduction to Bioceramics, edited by L.L. Hench and J. Wilson (World Scientific, 1993) p. 305.

    Chapter  Google Scholar 

  4. C.A. Beckham, T.K. Greenlee, Jr., and A.R. Crebo, “Bone Formation at a Ceramic Implant Interface,” Calc. Tissue Res. 8 (1971) p. 165.

    Article  CAS  Google Scholar 

  5. L.L. Hench, R. Splinter, T.K. Greenlee, Jr., and W. Allen, “Bonding Mechanisms at the Interface of Ceramic Prosthetic Materials,” J. Biomed. Mater. Res. 5 (1971) p. 117.

    Article  Google Scholar 

  6. P. Ducheyne and L.L. Hench, “Comparison of the Skeletal Fixation of Porous and Bioreac-tive Materials,” Trans. 1st Mfg. Euro. Soc. Bio-water. 2PS-2P0 (1977).

    Google Scholar 

  7. M. Jarcho, J.F. Kay, K.I. Gumaer, R.N. Doremus, and H.P. Drobeck, “Tissue, Cellular and Subcellular Events at a Bone-Ceramic Hydroxylapatite Interface,” J. Biocng. 1 (1977) p. 79.

    CAS  Google Scholar 

  8. K. de Groot, “Bioceramics Consisting of Calcium Phosphate Salts,” Biomaterials 1 (1980) p. 47.

    Article  Google Scholar 

  9. H. Aoki, K. Kato, M. Ogiso, and T. Tabata, “Sintered Hydroxyapatite as a New Dental Implant Material,” J. Dent. Outlook 49 (1977) p. 567.

    Google Scholar 

  10. P. Ducheyne, L.L. Hench, A. Kagan, M. Martens, A. Bursens, and J.C. Mulier, “Effect of Hydroxyapatite Impregnation on Skeletal Bonding of Porous Coated Implants,” J. Biomed. Mater. Res. 14 (1980) p. 225.

    Article  CAS  Google Scholar 

  11. S. Cook, K. Thomas, J.F. Kay, and M. Jarcho, “Hydroxyapatite-Coated Titanium for Orthopedic Implant Applications,” Clin. Orthop. 232 (1988) p. 225.

    CAS  Google Scholar 

  12. U. Heise, J.F. Osborn, and F. Duwe, “Hydroxyapatite Ceramic as a Bone Substitute,” Int. Orthop. 14 (3) (1990) p. 329.

    Article  CAS  Google Scholar 

  13. K. Soballe, K. Gotfredsen, H. Brockstedt-Rasmussen, P.T. Nielsen, and K. Rechnagel, “Histologic Analysis of a Retrieved Hydroxyapatite-Coated Femoral Prosthesis,” Clin. Orthop. 272 (1991) p. 255.

    Google Scholar 

  14. H. Oonishi, M. Yamamoto, H. Ishimaru, E. Tsuji, S. Kushitani, M. Aono, and Y. Ukon, “The Effect of Hydroxyapatite Coating on Bone Growth into Porous Titanium Alloy Implants,” J. Bone Int. Surg. 71 (1989) p. 213.

    Article  CAS  Google Scholar 

  15. P. Frayssinet, L. Arbore, and N. Rouquet, “Cytocompatibility of Calcium Phosphate Coatings With Various Ca/P Ratios,” in Bioceramics, vol. 10, edited by L. Sedel and C. Rey (Pergamon Press, 1997) p. 379.

    Google Scholar 

  16. L.L. Hench, “Bioactive Ceramics,” in Bioceramics: Material Characteristics Versus In Vivo Behavior, edited by P. Ducheyne and J.E. Lemons (New York Academy of Sciences, New York, 1988) p. 54.

    Google Scholar 

  17. J. Wilson and S.B. Low, “Bioactive Ceramics for Periodontal Treatment: Comparative Studies in the Patus Monkey,” J. Appl. Bio-mater. 3 (1992) p. 123.

    CAS  Google Scholar 

  18. S.B. Low; A.E. Fetner; A.E. Clark, Jr.; L.L. Hench; and J. Wilson-Hench; U.S. Patent No. 4,851,046 (1989).

    Google Scholar 

  19. E.J.G. Schepers, P. Ducheyne, L. Barbier, and S. Schepers, “Bioactive Glass Particles of Narrow Size Range: A New Material for the Repair of Bone Defects,” Implant Dentistry 2 (1993) p. 151.

    Article  CAS  Google Scholar 

  20. L.L. Hench and E.C. Ethridge, Biomaterials: An Interfacial Approach (Plenum Press, New York, 1982).

    Google Scholar 

  21. P. Ducheyne, L.L. Hench, A. Kagan, and M. Martens, “Short-Term Bonding Behaviour of Bioglass Coatings on Metallic Substrate,” Arch. Orthop. Traum. Surg. 94 (1979) p. 151.

    Article  Google Scholar 

  22. A.E. Clark, L.L. Hench, and H.A. Paschall, “The Influence of Surface Chemistry on Implant Interface Histology: A Theoretical Basis for Implant Materials Selection,” J. Biomed. Mater. Res. 10 (1976) p. 161.

    Article  CAS  Google Scholar 

  23. E.J.G. Schepers, P. Ducheyne, and M. De Clercq, “Interfacial Analysis of Fiber-Reinforced Bioactive Glass Dental Root Implants,” ibid. 23 (1989) p. 735.

    Article  CAS  Google Scholar 

  24. O.H. Andersson, K.H. Karlsson, and K. Kangasniemi, “Calcium Phosphate Formation at the Surface of Bioactive Glass In Vivo,” J. Non-Cryst. Solids 119 (1990) p. 290.

    Article  CAS  Google Scholar 

  25. U. Gross, J. Brandes, V. Strunz, I. Bab, and J. Sela, “The Ultrastructure of the Interface Between a Glass Ceramic and Bone,” J. Biomed. Mater. Res. 15 (1981) p. 291.

    Article  CAS  Google Scholar 

  26. T. Nakamura, T. Yamamuro, S. Higashi, T. Kokubo, and S. Itoo, “A New Glass-Ceramic for Bone Replacement: Evaluation of Its Bonding to Bone Tissue,” ibid. 19 (1985) p. 685.

    Article  CAS  Google Scholar 

  27. W. Holand, W. Vogel, K. Naumann, and J. Gummel, “Interface Reactions Between Machinable Bioactive Glass-Ceramics and Bone,” ibid. p. 303.

    Article  CAS  Google Scholar 

  28. S. Contoli, A. Krajewski, and A. Ravaglioli, “Histocompatibility and Bio-Physico-Chemistry of Doped Bioglass,” in Ceramics in Surgery, edited by P. Vincenzini (Elsevier, Amsterdam, 1983) p. 187.

    Google Scholar 

  29. C.Y. Kim, A.E. Clark, and L.L. Hench, “Early Stages of Calcium-Phosphate Layer Formation in Bioglasses,” J. Non-Cryst. Solids 113 (1989) p. 195.

    Article  CAS  Google Scholar 

  30. T. Kokubo, “Surface Chemistry of Bioactive Glass-Ceramics,” ibid. 120 (1990) p. 138.

    Article  CAS  Google Scholar 

  31. S. Radin, P. Ducheyne, B. Rothman, and A. Conti, “The Effect of In Vitro Modeling Conditions on the Surface Reactions on Bioactive Glass,” J. Biomed. Mater. Res. 37 (1997) p. 363.

    Article  CAS  Google Scholar 

  32. E.J.G. Schepers, M. De Clercq, and P. Ducheyne, “Histological and Histomorpho-metrical Analysis of Bioactive Glass and Fibre Reinforced Bioactive Glass Dental Root Implants,” J. Oral Rehab. 15 (1988) p. 473.

    Article  CAS  Google Scholar 

  33. P. Ducheyne, M. Martens, and A. Burssens, “Materials, Clinical and Morphological Evaluation of Custom-Made Bioactive-Glass-Coated Canine Hip Prostheses,” J. Biomed. Mater. Res. 18 (1984) p. 1017.

    Article  CAS  Google Scholar 

  34. E.J.G. Schepers, M. De Clercq, P. Ducheyne, and R. Kempeneers, “Bioactive Glass Particulate Material as a Filler for Bone Lesions,” J. Oral. Rehab. 18 (5) (1991) p. 439.

    Article  CAS  Google Scholar 

  35. S. Falaize, S. Radin, and P. Ducheyne, “In vitro behavior of silica-based xerogels intended as controlled release carriers” J. Am. Ceram. Soc. in press.

  36. W. Lai, P. Ducheyne, and J. Garino, “Removal Pathway of Silicon Released From Bioactive Glass Granules In Vivo,” in Bioceramics, edited by R. and J. LeGeros, vol. 11, in press.

  37. C.M. Flaitz, P. Ducheyne, D.S. Metsger, and M.R. Rieger (unpublished).

  38. C.M. Flaitz, C. Cohen, and E. Vresilovic, “Bioactive Glass Granules for the Treatment of Trabecular Bone Compression Fractures” (unpublished manuscript).

  39. K. Schwarz and D.B. Milne, “Growth-Promoting Effects of Silicon in Rats,” Nature 239 (1972) p. 333.

    Article  CAS  Google Scholar 

  40. E.M. Carlisle, “Silicon: A Possible Factor in Bone Calcification,” Science 167 (1970) p. 279.

    Article  CAS  Google Scholar 

  41. ibid., “A Silicon Requirement for Normal Skull Formation,” J. Nutrition 10 (1980) p. 352.

    Article  Google Scholar 

  42. ibid., “Silicon as an Essential Trace Element in Animal Nutrition,” Ciba Found. Symp. 121 (1986) p. 123.

    CAS  Google Scholar 

  43. W.J. Landis, D.D. Lee, J.T. Brenna, S. Chandra, and G.H. Morrison, “Detection and Localization of Silicon and Associated Elements in Vertebrate Bone Tissue by Imaging Ion Microscopy,” Calc. Tissue Int. 38 (1986) p. 52.

    Article  CAS  Google Scholar 

  44. E.J.G. Schepers, L. Barbier, and P. Ducheyne, “Implant placement enhanced by bioactive glass particles of narrow size range” Int.. Oral Maxillofac. Implants in press.

  45. P. Griss, E. Werner, G. Heimke, and U. Raute-Kreinsen, “Comparative Experimental Investigations With Bioglass (L.L. Hench) and Al203-Ceramic Coated With Mod. Bioglass. II. Results of Experiments With Loaded Implants,” Arch. Orthop. Traum. Surg. 92 (1978) p. 199.

    Article  CAS  Google Scholar 

  46. G. Piotrowski, L.L. Hench, W.C. Allen, and G.J. Miller, “Mechanical Studies of the Bone Bioglass Interfacial Bond,” J. Biomed. Mater. Res. 9 (1975) p. 47.

    Article  CAS  Google Scholar 

  47. T. Kokubo, S. Ito, M. Shigematsu, and T. Yamamuro, “Mechanical Properties of a New Type of Apatite-Containing Glass-Ceramic for Prosthetic Application,” J. Mater. Sci. 20 (1985) p. 2001.

    Article  CAS  Google Scholar 

  48. U.M. Gross and V. Strunz, “The Interface of Various Glasses and Glass Ceramics With Bony Implantation Bed,” J. Biomed. Mater. Res. 19 (1985) p. 251.

    Article  CAS  Google Scholar 

  49. T. Kokubo, “Bioactivity of Glasses and Glass Ceramics,” in Bone-Bonding Biomaterials, edited by P. Ducheyne, T. Kokubo, and C.A. van Blitterswijk (Reed Healthcare Communications, Leiderdorp, Netherlands, 1993) p. 31.

    Google Scholar 

  50. M. Brink, T. Turunen, R-P. Happonen, and A. Yli-Urpo, “Compositional Dependence of Bioactivity of Glasses in the System Na20-K20-MgO-B203-P205-Si02,” J. Biomed. Mater. Res. 37 (1997) p. 114.

    Article  CAS  Google Scholar 

  51. A. El-Ghannam, P. Ducheyne, and I.M. Shapiro, “Bioactive Material Template for In Vitro Synthesis of Bone,” ibid. 29 (1995) p. 359.

    Article  CAS  Google Scholar 

  52. ibid., “Bioactive Glass Templates for the Synthesis of Bone-Like Tissue In Vitro,” in Biomaterialsfor Cell and Drug Delivery, edited by A.G. Mikos, R.M. Murphy, H. Bernstein, and N.A. Peppas (Materials Research Society, Pittsburgh, 1994).

    Google Scholar 

  53. ibid., “Porous Bioactive Glass and Hy-droxyapatite Ceramic Affect Bone Cell Function In Vitro Along Different Time Lines,” J. Biomed. Mater. Res. 36 (1997) p. 167.

    Article  CAS  Google Scholar 

  54. A. El-Ghannam, P. Ducheyne, and I.M. Shapiro ibid., “The effect of serum proteins on osteoblast adhesion to surface modified bioactive glass and hydroxyapatite” J. Orthop. Res. in press.

  55. A.J. Garcia, P. Ducheyne, and D. Boettiger, “Quantification of Cell Adhesion Using a Spinning Disc Device and Application to Surface-Reactive Materials,” Biomaterials 18 (1997) p. 1091.

    Article  CAS  Google Scholar 

  56. ibid., “The Effect of Surface Reaction Stage on Fibronectin-mediated Adhesion of Osteoblast-Like Cells to Bioactive Glass,” J. Biomed. Mater. Res. 40 (1998) p. 48.

    Article  CAS  Google Scholar 

  57. P. Ducheyne, A. El-Ghannam, and I. Shapiro, “Effect of Bioactive Glass Templates on Osteoblast Proliferation and In Vitro Synthesis of Bone-Like Tissue” [Review], J. Cellular Biochem. 56 (1994) p. 162.

    Article  CAS  Google Scholar 

  58. L.L. Hench, “Bioceramics: From Concept to Clinic,” J. Am. Ceram. Soc. 74 (7) (1991) p. 1487.

    Article  CAS  Google Scholar 

  59. A. El-Ghannam, P. Ducheyne, and I.M. Shapiro, “Effect of Medium pH and Surface Reaction Layers on Osteoblast Phenotypic Expression and Mineralized Extracellular Matrix Formation on Bioactive Glass,” Biomaterials 18 (1997) p. 295.

    Article  CAS  Google Scholar 

  60. K. Chesmel, J. Beight, R. Rothman, and R.S. Tuan, “TGF-Beta Enhances Osseointegra-tion In Vivo,” in Bioceramics, vol. 6, edited by P. Ducheyne and D. Christiansen (Butterworth-Heinemann, Oxford, 1993) p. 21.

    Google Scholar 

  61. L.S. Beck, L. Deguzman, W.P. Lee, L.S. Beek, L. Dezusman, W.P. Lee, T.F. Zioncheck, G. Osaka, T. Nguyen, B. Ongpipattanakul, J. Gorrell, T.B. Aufdemorte, and P.L. Plouhar, “TGF-Beta 1 Bound to Tricalcium Phosphate Persists at Segmental Radial Defects and Induces Bone Formation,” Trans. 41st Annu. Meet. ORS 20 (1995) p. 593.

    Google Scholar 

  62. E.M. Santos, S. Radin, and P. Ducheyne, “A Novel Xerogel Carrier for Controlled Release of Biologically Active Molecules: II Release Profile for a Model Protein,” Trans. Soc. Biomater. 18 (1995) p. 140.

    Google Scholar 

  63. S.B. Nicoll, S. Radin, E.M. Santos, R.S. Tuan, and P. Ducheyne, “In Vitro Release Kinetics of Biologically Active Transforming Growth Factor-/31 From a Novel Porous Glass Carrier,” Biomaterials 18 (1997) p. 853.

    Article  CAS  Google Scholar 

  64. S. Downes, L. DiSilvio, C. P.A.T. Klein, and M.V. Kayser, “Growth Hormone Loaded Bioactive Ceramics,” J. Mater. Sci. Mater. Med. 2(1991) p. 176.

    Article  CAS  Google Scholar 

  65. E.M. Santos, S. Radin, B.J. Shenker, I.M. Shapiro, and P. Ducheyne, “Si-Ca-P Xerogels and Bone Morphogenetic Protein Act Syner-gistically on Rat Stromal Marrow Cell Differentiation In Vitro,” J. Biomed. Mater. Res. 41 (1998) p. 87.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ducheyne, P. Stimulation of Biological Function With Bioactive Glass. MRS Bulletin 23, 43–50 (1998). https://doi.org/10.1557/S0883769400030992

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/S0883769400030992

Navigation