Dielectric Constant of Barium Titanate Synthesized by Containerless Processing


Containerless processing is an attractive synthesis technique that permits deep undercooling and provides the possibility to solidify the undercooled liquid into a selected phase, and to synthesize materials with novel properties. Spheroidal BaTiO3 samples with a diameter of approximately 2mm were solidified by containerless processing, using an electrostatic levitation apparatus. Single crystal hexagonal BaTiO3 and polycrystalline perovskite BaTiO3 were successfully synthesized at different undercoolings levels. An oxygen-deficient single crystal of hexagonal BaTiO3 obtained with this method, exhibited a giant permittivity higher than 100000, with a loss component tanδ of about 0.1 at room temperature. The permittivity showed weak temperature dependence in the 70 K to 300 K range, and a dramatic drop by 2 orders of magnitude below 70 K. In comparison, the polycrystalline perovskite BaTiO3 showed a permittivity of 4000 at room temperature.

This is a preview of subscription content, access via your institution.


  1. 1.

    W. J. Merz, Phys. Rev. 76, 1221 (1949)

    CAS  Article  Google Scholar 

  2. 2.

    H. T. Evans, Jr. and R. D. Burbank, J. Chem. Phys. 16, 634 (1948)

    CAS  Article  Google Scholar 

  3. 3.

    E. Sawaguchi, Y. Akishige, and M. Kobayashi, J. Phys. Soc. Jpn. 54, 480 (1985).

    CAS  Article  Google Scholar 

  4. 4.

    E. Sawaguchi, Y. Akishige, and M. Kobayashi, J. Appl. Phys. Suppl. 24(2), 252 (1985).

    CAS  Article  Google Scholar 

  5. 5.

    D. C. Sinclair, J. M. S. Skakle, F. D. Morrison, R. B. Smith, T. P. Beales. J. Mater. Chem. 9, 1327 (1999).

    CAS  Article  Google Scholar 

  6. 6.

    Y. S. Sung, H. Takeya, K. Hirata and K. Togano, Appl. Phys. Lett. 82, 3638 (2003).

    CAS  Article  Google Scholar 

  7. 7.

    P.- F. Paradis, J. Yu, T. Ishikawa, T. Aoyama, and S. Yoda. Appl. Phys. A. 76, 1 (2003).

    Google Scholar 

  8. 8.

    P.- F. Paradis, T. Ishikawa, J. Yu, and S. Yoda. Rev. Sci. Instrum. 72, 2811 (2001).

    CAS  Article  Google Scholar 

  9. 9.

    K.W. Kirby, and B.A. Wechsler. J. Am. Ceram. Soc. 74, 1841 (1991).

    CAS  Article  Google Scholar 

  10. 10.

    K. Okazaki: Ceramics engineering for dielectrics, fourth-ed. (Gakken-Sha Co., Ltd, Tokyo, 1992).

    Google Scholar 

  11. 11.

    M. A. Subramanian,, D. Li, N. Duan,, B. A. Reisnert, and A. W. Sleightt, J. Solid State Chem. 151, 323 (2000).

    CAS  Article  Google Scholar 

  12. 12.

    A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, and S.M. Shapiro, Solid State Commun. 15, 17 (2000).

    Google Scholar 

  13. 13.

    C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, Science 293, 673 (2001).

    CAS  Article  Google Scholar 

  14. 14.

    J. Yu, P.-F. Paradis, T. Ishikawa, and S. Yoda, Appl. Phys. Lett. 85, 2899 (2004).

    CAS  Article  Google Scholar 

  15. 15.

    J. Yu, P.-F. Paradis, T. Ishikawa, S. Yoda, Y. Saita, and M. Itoh, Chem. Mater. 16, 3973 (2004)

    CAS  Article  Google Scholar 

Download references


The authors would like to thank Prof. Y. Shan (Utsunomiya University) for single crystal X-ray diffraction and Prof. Mitsuru Itoh (Tokyo Institute of Technology) and Prof. Y. Inaguma (Gakushuin University) for stimulating discussions. A part of this work was supported by “Nanotechnology Support Project” of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information



Corresponding author

Correspondence to Jianding Yu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yu, J., Paradis, PF., Ishikawa, T. et al. Dielectric Constant of Barium Titanate Synthesized by Containerless Processing. MRS Online Proceedings Library 848, 1–6 (2004). https://doi.org/10.1557/PROC-848-FF10.4

Download citation