Skip to main content
Log in

Influence of Halides on the Luminescence of Oxide/Anthracene/Polymer Nanocomposites

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Nanocomposites made of an oxide core of a wide band gap insulator, a lumophore monolayer of anthracene and an outer protecting layer of PMMA are studied regarding their luminescence properties and the influence of halides stemming either from the precursor used for synthesis or from the lumophore itself. Halide-free nanocomposites exhibit luminescence spectra resembling to that of anthracene with some significant differences concerning the intensity ratio and an additional peak at 420 nm. Nanocomposites made from chlorides show excimer-like spectra with broad maxima. In microanalysis residual chlorine can be detected. Chlorine-free oxide kernels, coated with 9,10 dichloroanthracene exhibit luminescence spectra resembling to a superposition of the pure lumophores 9 chloro- and 9,10 dichloroanthracene. It can be shown that the origin of the halide strongly influences, but does not quench the luminescence spectra of the powders. Suspensions of the chlorine containing nanocomposites in ethanol exhibit modified anthracene like spectra. This is a strong indication for dechlorination by proton-transfer in ethanol. Suspensions of the same material in water lead to spectra showing a superposition of excimer spectrum and modified anthracene spectrum. Here a partial dechlorination occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Vollath, I. Lamparth, D.V. Szabó, in “Nanophase and Nanostructured Materials IV” edited by S. Komarneni, J.C. Parker, R.A. Vaia, G.Q. Lu, J.-I. Matsushita, (Mater. Res. Soc. Proc. 703, Pittsburgh, PA, 2002) V7.8.1–V7.8.6.

    Google Scholar 

  2. D. Vollath, D.V. Szabó, S. Schlabach, J. Nanoparticle Res. 6, 181–191 (2004).

    Google Scholar 

  3. W. Dong, C. Zhu, J. Phys. Chem. Solids 64, 265–271 (2003).

    Google Scholar 

  4. S. Musikhin, L. Bakueva, E.H. Sargabt, A. Shik, J. Appl. Phys. 91, 6679–6683 (2002).

    Google Scholar 

  5. T. Förster, in “Fluoreszenz organischer Verbindungen”, Vandenheock & Ruprecht, Göttingen (Germany), p. 97–100 (1951).

    Google Scholar 

  6. D. Vollath, I. Lamparth, D.V. Szabó, Berg und Hüttenmännische Monatshefte (BHM), 147, 350–358 (2002).

    Google Scholar 

  7. D. Vollath, I. Lamparth, F. Wacker, German Patent Application DE 10203907.0 (2002).

  8. D. Vollath, D. V. Szabó, in “Innovative Processing of Films and Nanocrystalline Powders” edited by K.-L. Choy, Imperials College Press, p. 210–251 (2002).

  9. J.R. Lakowicz, in “Principles of Fluorescence Spectroscopy”, Kluewer Academic / Plenum Publishers, New York, p. 238 (1999).

  10. D.R. Worrall, S.L. Williams, A. Eremenko, N. Smirnova, O. Yakimenko, G. Starukh, Colloids and Surfaces A 230, 45–55 (2004).

    Google Scholar 

  11. C.S. Kim, S. M. Oh, S. Kim, C.G. Cho, Macromol. Rapid Commun. 19, 191–196 (1998).

    Google Scholar 

  12. Q. Li, D. Ai, X. Dai, J. Wang, Powder Technology 137, 34–40 (2003).

    Google Scholar 

  13. K. Hamanoue, T. Nakayama, K. Ikenaga, K. Ibuki, J. Phys. Chem. 96, 10297–10302 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szabo, D.V., Reuter, H., Schlabach, S. et al. Influence of Halides on the Luminescence of Oxide/Anthracene/Polymer Nanocomposites. MRS Online Proceedings Library 846, 711 (2004). https://doi.org/10.1557/PROC-846-DD7.11

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-846-DD7.11

Navigation