High Temperature Nanoindentation for the Study of Flow Defects


Our recent progress in elevated temperature nanoindentation is reviewed, with an emphasis on the study of discrete events (i.e., pop-in phenomena) observed during nanoindentation. For crystalline materials the incipient plasticity problem is associated with the nucleation of dislocations, an effect which we show to be significantly temperature dependent. For metallic glasses it is the operation of individual shear bands beneath the indenter that gives rise to pop-in events; here we also show this to be a temperature dependent phenomenon. Approaches to extract the activation volume and energy of defects involved in plastic flow beneath the indenter are also briefly described.

This is a preview of subscription content, access via your institution.


  1. [1]

    S. Suresh, T. G. Nieh and B. W. Choi, Scripta Mater. 41, 951 (1999).

    Article  CAS  Google Scholar 

  2. [2]

    D. F. Bahr, D. E. Kramer and W. W. Gerberich, Acta Mater. 46, 3605 (1998).

    Article  CAS  Google Scholar 

  3. [3]

    Y. L. Chiu and A. H. W. Ngan, Acta Mater. 50, 1599 (2002).

    Article  CAS  Google Scholar 

  4. [4]

    W. W. Gerberich, J. C. Nelson, E. T. Lilleodden, P. Anderson and J. T. Wyrobek, Acta Mater. 44, 3585 (1996).

    Article  CAS  Google Scholar 

  5. [5]

    C. A. Schuh and T. G. Nieh, J. Mater. Res. 19, 46 (2004).

    Article  CAS  Google Scholar 

  6. [6]

    C. A. Schuh and T. G. Nieh, Acta Mater. 51, 87 (2003).

    Article  CAS  Google Scholar 

  7. [7]

    C. A. Schuh and A. C. Lund, J. Mater. Res. 19, 2152 (2004).

    Article  CAS  Google Scholar 

  8. [8]

    S. A. Syed-Asif and J. B. Pethica, Phil. Mag. A76, 1105 (1997).

    Article  Google Scholar 

  9. [9]

    D. F. Bahr, D. E. Wilson and D. A. Crowson, J. Mater. Res. 14, 2269 (1999).

    Article  CAS  Google Scholar 

  10. [10]

    D. E. Kramer, K. B. Yoder and W. W. Gerberich, Phil. Mag. A81, 2033 (2001).

    Article  Google Scholar 

  11. [11]

    J. Xia, C. X. Li and H. Dong, Mater. Sci. Eng. A354, 112 (2003).

    Article  CAS  Google Scholar 

  12. [12]

    B. D. Beake and J. F. Smith, Phil. Mag. A82, 2179 (2002).

    Article  Google Scholar 

  13. [13]

    S. A. S. Asif and J. B. Pethica, Journal of Adhesion 67, 153 (1998).

    Article  Google Scholar 

  14. [14]

    A. C. Lund, A. M. Hodge and C. A. Schuh, Appl. Phys. Lett. 85, 1362 (2004).

    Article  CAS  Google Scholar 

  15. [15]

    C. A. Schuh, A. C. Lund and T. G. Nieh, Acta Mater. 52, 5879 (2004).

    Article  CAS  Google Scholar 

  16. [16]

    F. Spaepen, Acta Metall. 25, 407 (1977).

    Article  CAS  Google Scholar 

  17. [17]

    A. S. Argon, Acta Metall. 27, 47 (1979).

    Article  CAS  Google Scholar 

  18. [18]

    J. Megusar, A. S. Argon and N. J. Grant, Mater. Sci. Eng. 38, 63 (1979).

    Article  CAS  Google Scholar 

Download references


This work was supported by several sources, including: the Office of Naval Research, Grant Nos. N00014-01-1-0808 and N00014-04-1-0669, the Army Research Office, Grant No. DAAD19-03-1-0235, and the University of California, Lawrence Livermore National Laboratory under contract with the US Department of Energy, Contract No. W-7405-Eng-48.

Author information



Corresponding author

Correspondence to C. A. Schuh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schuh, C.A., Mason, J.K., Lund, A.C. et al. High Temperature Nanoindentation for the Study of Flow Defects. MRS Online Proceedings Library 841, R4.8 (2004). https://doi.org/10.1557/PROC-841-R4.8

Download citation