Skip to main content
Log in

Spin Lifetime Tuning in Zincblende Heterostructures and Tions to Spin Devices

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We present analytical expressions for the D’yakonov-Perel’ spin relaxation rates under the combined action of bulk and structural inversion asymmetry for [111] zincblende heterostructures when terms up to linear and third order in k are included in the Hamiltonian. We see for [111] heterostructures that, under the right conditions, the lowest-order-in-k component of the spin relaxation tensor can be made to vanish for all spin components at the same time. We study how the inclusion of terms of higher order in k affects these results. We finally discuss a proposal for a resonant spin lifetime transistor (RSLT) using the spin lifetime tuning concepts presented above, where the characteristics of the [111] device give the designer an added degree of freedom on the direction of the injected spins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Esaki, R. Tsu, IBM J. Res. Develop. 14, 61 (1970).

    Article  CAS  Google Scholar 

  2. K. K. Likharev, Proc. IEEE&1, 606 (1999). And references therein.

  3. S. Datta, B. Das, Appl. Phys. Lett. 56, 665 (1990).

    Article  CAS  Google Scholar 

  4. Y. A. Bychkov, E. I. Rashba, J. Phys. C 17, 6039 (1984).

    Article  Google Scholar 

  5. G. Dresselhaus, Phys. Rev. 100, 580 (1955).

    Article  CAS  Google Scholar 

  6. M. I. D’yakonov, V. I. Perel’, Fiz. Tverd. Tel. 13, 3581 (1971).

    Google Scholar 

  7. M. I. D’yakonov, V. Y. Kachorovskii, Fiz. Tekh. Pohψrovodn. 20, 178 (1986). [Sov. Phys. Semicond. 20, 110 (1986)].

    Google Scholar 

  8. J. Luo, H. Munekata, F. F. Fang, P. J. Stiles, Phys. Rev. B 38}, 10142 (1988).

    Article  CAS  Google Scholar 

  9. G. E. Pikus, A. N. Titkov, Optical Orientation, F. Meier, B. P. Zakharchenya, eds. (North Holland, Amsterdam, Netherlands, 1984), vol. 8, pp. 73–131.

    Article  Google Scholar 

  10. N. S. Averkiev, L. E. Golub, M. Willander, J. Phys.: Condens. Matter 14, R271 (2002).

    CAS  Google Scholar 

  11. J. Schliemann, J. C. Egues, D. Loss, Phys. Rev. Lett. 90, 146801 (2003).

    Article  Google Scholar 

  12. X. Cartoixà, D. Z.-Y. Ting, Y.-C. Chang, Appl. Phys. Lett. 83, 1462 (2003).

    Article  Google Scholar 

  13. N. S. Averkiev, L. E. Golub, Phys. Rev 560, 15582 (1999).

    Article  Google Scholar 

  14. A. A. Kiselev, K. W. Kim, Phys. Stat. Sol. (b) 221, 491 (2000).

    Article  CAS  Google Scholar 

  15. K. C. Hall, W. H. Lau, K. Gϋndogdu, M. E. Flatté, T. F. Boggess, Appl. Phys. Lett. 83, 2937 (2003).

    Article  CAS  Google Scholar 

  16. R. Eppenga, M. F. H. Schuurmans, Phys. Rev. B 37, 10923 (1988).

    Article  CAS  Google Scholar 

  17. X. Cartoixà, D. Z.-Y. Ting, Y.-C. Chang, cond-mat/0402237 (2004).

    Google Scholar 

  18. W. H. Lau, J. T. Olesberg, M. E. Flatté, Phys. Rev B 64, 161301 (2001).

    Article  Google Scholar 

  19. T. Schäpers, G. Engels, J. Lange, T. Klocke, M. Hollfelder, H. Lüth, J. Appl. Phys. 83, 4324 (1998).

    Article  Google Scholar 

  20. X. Cartoixà, D. Z.-Y. Ting, E. S. Daniel, T. C. McGill, Sυperlatt. Microstruct. 30, 309 (2001).

    Article  Google Scholar 

  21. J. Nitta, T. Akazaki, H. Takayanagi, T. Enoki, Phys. Rev. Lett. 78, 1335 (1997).

    Article  CAS  Google Scholar 

  22. M. Cardona, N. E. Christensen, G. Fasol, Phys. Rev. 538, 1806 (1988).

    Article  Google Scholar 

  23. X. Cartoixà, D. Z.-Y. Ting, T. C. McGill, cond-mat/0212394 (2002).

    Google Scholar 

  24. R. J. Elliott, Phys. Rev 96, 266 (1954).

    Article  CAS  Google Scholar 

  25. Y. Yafet, Solid State Physics, F. Seitz, D. Turnbull, eds. (Academic Press, New York, 1963), vol. 14, pp. 1–98.

    Article  CAS  Google Scholar 

  26. G. L. Bir, A. G. Aronov, G. E. Pikus, Zh. Eksp. Teor Fiz. 69, 1382 (1975). [Sov. Phys. JETP 42, 705 (1976)].

    Google Scholar 

  27. Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, H. Ohno, Phys. Rev. Lett. 83, 4196 (1999).

    Article  CAS  Google Scholar 

  28. O. Z. Karimov, G. H. John, R. T. Harley, W. H. Lau, M. E. Flatte, M. Henini, R. Airey, Phys. Rev Left 91, 246601 (2003).

    CAS  Google Scholar 

  29. C. Tsang, R. E. Fontana, T. Lin, D. E. Heim, V. S. Speriosu, B. A. Gurney, M. L. Mason, IEEE Trans. Magn. 30, 3801 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Stuart Wolf for helpful discussions. This work was supported in part by Defense Advanced Research Projects Agency (DARPA) under Contracts No. MDA972-01-C-0002 and No. DAAD19-01-1-0324. A part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, through an agreement with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cartoixà, X., Ting, D.ZY. & Chang, YC. Spin Lifetime Tuning in Zincblende Heterostructures and Tions to Spin Devices. MRS Online Proceedings Library 825, 66 (2004). https://doi.org/10.1557/PROC-825-G6.6

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-825-G6.6

Navigation