Skip to main content
Log in

Spin Effects of Low-dimensional Electron Gases Studied by Far-infrared Photoconductivity Experiments

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We review our recent work on spin effects in low-dimensional electron gases studied using far-infrared photoconductivity technique. We measure the spin-orbit coupling parameter oc via spectroscopy by detecting the combined resonance. Detailed filling-factor dependent study shows the collective nature of this excitation, in accordance to theoretical predictions that both Kohn and Larmor theorem are broken for long-wavelength excitations that changes both the Landau and spin quantum numbers. We find that the long spin-relaxation time of a two-dimensional electron gas results in a novel bolometric spin effect, which gives rise to a substantial photo resistance change by reversing the spin polarization of electrons at the Fermi-level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Abstreiter, P. Kneschaurek, J.P. Kotthaus, and J.F. Koch, Phys. Rev. Lett. 32, 104 (1974).

    Article  CAS  Google Scholar 

  2. S.J. Allen Jr., D.C. Tsui, and J.V. Dalton, Phys. Rev. Lett. 32, 107 (1974).

    Article  Google Scholar 

  3. D. Stein, K.v. Klitzing, and G. Weimann, Phys. Rev. Lett. 51, 130 (1983).

    Article  CAS  Google Scholar 

  4. B. Das, S. Datta, and R. Reifenberger, Phys. Rev. B 41, 8278 (1990).

    Article  CAS  Google Scholar 

  5. B.D. McCombe, S.G. Bishop, and R. Kaplan, Phys. Rev. Lett. 18, 748 (1967); B.D. McCombe, Phys. Rev. 181, 1206 (1969).

    Article  Google Scholar 

  6. J. Nitta et al., Phys. Rev. Lett. 78, 1335 (1997); G. Engels et al., Phys. Rev. B 55, 1958 (1997); C.-M. Hu et al., ibid. 60, 7736 (1999); T. Matsuyama et al., ibid. 61, 15 588 (2000); D. Grundier, Phys. Rev. Lett. 84, 6074 (2000).

    Article  CAS  Google Scholar 

  7. S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).

    Article  CAS  Google Scholar 

  8. T. Chakraborty and P. Pietiläinen, The Quantum Hall Effects: Fractional and Integral, (Springer, Berlin, MA, 1995).

    Book  Google Scholar 

  9. T. Ando, A.B. Fowler, and F. Stem, Rev. Mod. Phys. 54, 437 (1982).

    Article  CAS  Google Scholar 

  10. C. Kallin and B.I. Halperin, Phys. Rev. B 30, 5655 (1984). A. H. MacDonald and C. Kallin, Phys. Rev. B 40, 5795 (1989).

    Article  Google Scholar 

  11. W. Kohn, Phys. Rev. 123, 1242 (1961).

    Article  Google Scholar 

  12. A. Pinczuk, B.S. Dennis, D. Heiman, C. Kallin, E. Brey, C. Tejedor, S. Schmitt-Rink, E.N. Pfeiffer, and K.W. West, Phys. Rev. Fett. 68, 3623 (1992).

    CAS  Google Scholar 

  13. C.-M. Hu, E. Batke, K. Köhler, and P. Ganser, Phys. Rev. Fett. 75, 918 (1995); Phys. Rev. Fett. 76, 1904 (1996).

    CAS  Google Scholar 

  14. F. Neppl, J.P. Kotthaus, and J.F. Koch, Phys. Rev. B 19, 5240 (1979).

    Article  CAS  Google Scholar 

  15. J.K. Wang, D.C. Tsui, M. Santos, and M. Shayegan, Phys. Rev. B 45, 4384(1992).

    Article  CAS  Google Scholar 

  16. K. Hirakawa, K. Yamanaka, M. Endo, M. Saeki, and S. Komiyama, Phys. Rev. B 63, 085320 (2001).

    Article  Google Scholar 

  17. J.P. Kotthaus, “Infrared excitations in electronic systems with reduced dimensionality”, NATO ASI Series, Interface, quantum wells, and superlattices, ed. C.R. Eeavens and R. Taylor (Plenum Press, New York and Eondon, 1988) pp. 95–126.

    Chapter  Google Scholar 

  18. C. -M. Hu, C. Zehnder, Ch. Heyn, D. Heitmann, Phys. Rev. B, 67, 201302 (R) (2003).

    Article  Google Scholar 

  19. K. Bittkau, Ch. Menk, Ch. Heyn, D. Heitmann, and C. -M. Hu, Phys. Rev. B, 68 195303 (2003).

    Article  Google Scholar 

  20. C. Zehnder, A. Wirthmann, Ch. Heyn, D. Heitmann and C. -M. Hu, Europhys. Fett., 63, 576 (2003).

    Article  CAS  Google Scholar 

  21. S. Brosig, K. Ensslin, R.J. Warburton, C. Nguyen, B. Brar, M. Thomas, and H. Kroemer, Phys. Rev. B 60, 13 989 (1999).

    Google Scholar 

  22. J.P. Eongo and C. Kallin, Phys. Rev. B 47, 4429 (1993).

    Article  Google Scholar 

  23. K. Kern, D. Heitmann, P. Grambow, Y.H. Zhang, and K. Ploog, Phys. Rev. Lett. 66, 1618 (1991); A. Lorke, J.P. Kotthaus, and K. Ploog, Superlattices Microstruct. 9, 103 (1991); Y. Zhao, D.C. Tsui, M. Santos, M. Shayegan, R.A. Ghanbari, D.A. Antoniadis, and H.I. Smith, Appl. Phys. Lett. 60, 1510 (1992).

    Article  CAS  Google Scholar 

  24. S.A. Mikhailov and V.A. Volkov, Phys. Rev. B 52, 17260 (1995); S.A. Mikhailov, ibid. 54, 14293 (1996).

    Article  CAS  Google Scholar 

  25. N.N. Kuzma, P. Khandelwal, S.E. Barrett, L.N. Pfeiffer, and K.W. West, Science 281, 686 (1998); J.M. Kikkawa and D.D. Awschalom, Nature 397, 139 (1999).

    Google Scholar 

  26. I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).

    Article  Google Scholar 

Download references

Acknowledgments

This invited contribution has been based on collaborative studies which I unfortunately unable to present at the MRS 2004 spring meeting in San Francisco due to the “meandering long” visa process. I want to thank C. Zehnder, A. Wirthmann, K. Bittkau, Ch. Menk, Ch. Heyn, D. Heitmann and Y.S. Gui for their valuable contributions. I also wish to acknowledge financial supports by the EU 6th-Framework Programme through project BMR, the NEDO international spintronics project, the DFG through SFB 508 and BMBF through project 01BM905.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-M. Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, CM. Spin Effects of Low-dimensional Electron Gases Studied by Far-infrared Photoconductivity Experiments. MRS Online Proceedings Library 825, 44 (2004). https://doi.org/10.1557/PROC-825-G4.4

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-825-G4.4

Navigation