Skip to main content
Log in

Combinatorial Synthesis and Reactivity Screening of Electro-Oxidation Catalyst Gradients

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Combinatorial methods represent an appealing experimental method for the discovery of heterogeneous catalysts. One can efficiently identify candidate materials or sample vast regions of composition space using a combination of dense catalyst libraries and high-throughput reactivity screening techniques. This is particularly appealing for the discovery of novel catalysts for low temperature fuel cells where multi-component systems have shown improved performance. For example, the poison tolerance of typical anode catalysts can be improved by the addition of oxophilic components such as ruthenium, molybdenum, tin or osmium. Consequently, a vast composition space must be sampled in order to identify catalyst compositions or regions of composition space with greater activity. Combinatorial methods represent a practical means to speed-up the catalyst discovery process. In this manuscript, we demonstrate a novel method for combinatorial catalyst discovery based upon the synthesis and reactivity mapping of catalyst composition gradients. Samples consisting of uniform variations in surface composition of metals catalysts (Pt-M1 and Pt-M1-M2, where M1 M2 = Ru, Mo, Sn or Os) are fabricated using a gel-transfer technique. A concentration gradient of source metal ions is produced in a swollen polymer gel and then transferred onto a surface by electrodeposition to create a continuous composition gradient. An in situ reactivity-mapping tool based on the scanning electrochemical microscope is used to interrogate these catalyst gradients for the hydrogen oxidation reaction in the presence of adsorbed carbon monoxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rawlings R. Tailoring properties - functionally graded materials. Materials World 3, 474–475 (1995).

    Google Scholar 

  2. Marple B. R. & Boulanger J. Graded casting of materials with continuous gradients. J. Amer. Cer. Soc. 77, 2747–2750 (1994).

    Article  CAS  Google Scholar 

  3. Neubrand A. & Rodel J. Gradient materials: An overview of a novel concept. Z. Metal. 88, 358–371 (1997).

    CAS  Google Scholar 

  4. Ruardy T. G., Schakenraad J. M., vanderMei H. C. & Busscher H. J. Preparation and characterization of chemical gradient surfaces and their application for the study of cellular interaction phenomena. Surf. Sci. Rep. 29, 3–30 (1997).

    Article  Google Scholar 

  5. Xiang X.-D. et al. A combinatorial approach to materials discovery. Science 268, 1738–1740 (1995).

    Article  CAS  Google Scholar 

  6. Reddington E. et al. Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science 280, 1735–1737 (1998).

    Article  CAS  Google Scholar 

  7. Ertl G., Neumann M. & Streit K. M. Chemisorption of CO on the Pt(111) surface. Surf. Sci. 64, 393–410 (1977).

    Article  CAS  Google Scholar 

  8. Appleby A. J. & Foulkes F. R. Fuel Cell Handbook (Van Nostrand Reinhold, New York, 1989).

    Google Scholar 

  9. Gasteiger H. A., Markovic N. M. & Ross P. N. H2 and CO electrooxidation on well-characterized Pt Ru, and Pt-Ru.1. Rotating-disk electrode studies of the pure gases including temperature effects. J. Phys. Chem. 99, 8290–8301 (1995).

    Article  CAS  Google Scholar 

  10. Houghten R. A. et al. Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 354, 84–86 (1991).

    Article  CAS  Google Scholar 

  11. Danielson E. et al. A rare-earth phosphor containing one-dimensional chains identified through combinatorial methods. Science 279, 837–839 (1998).

    Article  CAS  Google Scholar 

  12. Huo Q., Sui G., Kele P. & Leblanc R. M. Combinatorial surface chemistry- Is it possible? Angew. Chem. - Int. Ed. 39, 1854 (1857).

    Article  Google Scholar 

  13. Taylor S. J. & Morken J. P. Thermographic selection of effective catalysts from an encoded polymer-bound library. Science 280, 267–270 (1998).

    Article  CAS  Google Scholar 

  14. Cong P. J. et al. High-throughput synthesis and screening of combinatorial heterogeneous catalyst libraries. Angew. Chem. - Int. Ed. 38, 484–488 (1999).

    Article  CAS  Google Scholar 

  15. Chaudhury M. K. & Whitesides G. M. How to make water run uphill. Science 256, 1539–1541 (1992).

    Article  CAS  Google Scholar 

  16. Elwing H. & Gölander C. G. Protein and detergent interaction phenomena on solid-surfaces with gradients in chemical-composition. Adv. Coll. and Int. Sci. 32, 317–339 (1990).

    Article  CAS  Google Scholar 

  17. Dertinger S. K. W., Chiu D. T., Jeon N. L. & Whitesides G. M. Generation of gradients having complex shapes using microfluidic networks. Anal. Chem. 73, 1240–1246 (2001).

    Article  CAS  Google Scholar 

  18. Fuierer R. R., Carroll R. L., Feldheim D. L. & Gorman C. B. Patterning mesoscale gradient structures with self-assembled monolayers and scanning tunneling microscopy based replacement lithography. Adv. Mater. 14, 154 (2002).

    Article  CAS  Google Scholar 

  19. Tingey M. L., Luk Y. Y. & Abbott N. L. Orientations of liquid crystals on chemically functionalized surfaces that possess gradients in manometer-scale topography. Adv. Mater. 14, 1224 (2002).

    Article  CAS  Google Scholar 

  20. Balss K. M., Coleman B. D., Lansford C. H., Haasch R. T. & Bohn P. W. Active spatiotemporal control of electrochemical reactions by coupling to in-plane potential gradients. J. Phys. Chem. B 105, 8970–8978 (2001).

    Article  CAS  Google Scholar 

  21. Jayaraman S. & Hillier A. C. Construction and reactivity mapping of a platinum catalyst gradient using the scanning electrochemical microscope. Langmuir 17, 7857–7864 (2001).

    Article  CAS  Google Scholar 

  22. Lee K. Y. C., Klingler J. F. & McConnell H. M. Electric-field-induced concentration gradients in lipid monolayers. Science 263, 655–658 (1994).

    Article  CAS  Google Scholar 

  23. Groves J. T., Boxer S. G. & McConnell H. M. Electric field-induced critical demixing in lipid bilayer membranes. Proc. Nat. Acad. Sci. 95, 935–938 (1998).

    Article  CAS  Google Scholar 

  24. Meredith J. C., Smith A. P., Karim A. & Amis E. J. Combinatorial materials science for polymer thin-film dewetting. Macromolecules 33, 9747–9756 (2000).

    Article  CAS  Google Scholar 

  25. Meredith J. C., Karim A. & Amis E. J. High-throughput measurement of polymer blend phase behavior. Macromolecules 33, 5760–5762 (2000).

    Article  CAS  Google Scholar 

  26. Wu T., Efimenko K. & Genzer J. Combinatorial study of the mushroom-to-brush crossover in surface anchored polyacrylamide. J. Amer. Chem. Soc. 124, 9394–9395 (2002).

    Article  CAS  Google Scholar 

  27. Bard A. J. & Mirkin M. V. Scanning Electrochemical Microscopy (Marcel Dekker, Inc., 2001).

    Book  Google Scholar 

  28. Jambunathan K., Shah B. C., Hudson J. L. & Hillier A. C. Scanning electrochemical microscopy of hydrogen electro- oxidation. Rate constant measurements and carbon monoxide poisoning on platinum. J. Electroanal. Chem. 500, 279–289 (2001).

    Article  CAS  Google Scholar 

  29. Lee C., Miller C. J. & Bard A. J. Scanning electrochemical microscopy: Preparation of submicrometer electrodes. Anal. Chem. 63, 78–83 (1991).

    Article  CAS  Google Scholar 

  30. Shah B. C. & Hillier A. C. Imaging the reactivity of electro-oxidation catalysts with the scanning electrochemical microscope. J. Electrochem. Soc. 147, 3043–3048 (2000).

    Article  CAS  Google Scholar 

  31. Cussler E. L. Diffusion: Mass Transfer in Fluid Systems (Cambridge University Press, 1997).

    Google Scholar 

  32. Watanabe M. & Motoo S. Electrocatalysis by ad-atoms part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms. Electroanal. Chem. and Interfac. Electrochem. 60, 275–283 (1975).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Office of Naval Research for a Young Investigator Award, the National Science Foundation for a CAREER Award, the Camille and Henry Dreyfus Foundation for a New Faculty Award, and the Donors of The Petroleum Research Fund as administered by the American Chemical Society, for partial support of this research.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayaraman, S., Hillier, A.C. Combinatorial Synthesis and Reactivity Screening of Electro-Oxidation Catalyst Gradients. MRS Online Proceedings Library 804, 239–247 (2003). https://doi.org/10.1557/PROC-804-JJ8.11

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-804-JJ8.11

Navigation