Skip to main content
Log in

X-Ray Diffraction Analysis of GaN and AlGaN

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

In this paper, threading dislocation densities in GaN and AlGaN epitaxial layers have been evaluated using two different X-ray analysis techniques; a Williamson Hall (WH) plot and reciprocal space mapping (RSM). GaN and AlGaN have crystalline growth composed of columnar structures that can be estimated by coherence length and angular misorientation measured by X-ray. A WH plot can provide information about coherence length and tilt angle from a linear fit to the linewidth of the triple axis rocking curve (000l) symmetric reflections. RSM is typically used to obtain this data, but it is more involved in technique. The two dominant components of threading dislocation densities (screw and edge types) in the GaN and AlGaN epitaxial layers were found to be similar by both techniques. The treading dislocation density correlates to the size of columnar structure as determined by coherence length, tilt angle, and twist angle. The effect of Al composition in AlGaN alloys on these dislocation densities was investigated and found to depend on strongly on the type of nucleation layer, GaN or AlN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Kim, and J. Je, Mat.Res. Soc. Symp.595, W3.52.1 (2000)

  2. T. Metzger, R. Hopler, E. Born, and O. Ambacher, Phil. Mag. A, 77, 1013 (1998)

    Article  CAS  Google Scholar 

  3. F. Ponce, Microstructure of Epitaxial III-V Nitride Thin Films, 1997, p.141

  4. T. Cheng, L. Jenkins, S. Hooper, and C. Foxon, Appl. Phy. Lett. 66, 1509 (1995)

    Article  CAS  Google Scholar 

  5. P.F. Fewster, X-Ray Scattering from semiconductors 263 (2000)

  6. P.F. Fewster, X-Ray and Neutron Dynamical Diffraction: Theory and Applications, NATO ASI Series B: Physics 357 (1996) p.287

  7. P.R. Fewster, N. L. Andrew, and C.T. Foxon, J. Crys. Growth 230, 404, (2001)

    Article  Google Scholar 

  8. D.K. Bowen, High Resolution X-ray Diffractometry and Topography, 149 (2001)

  9. G.K. Williamson and W.H. Hall, Acta. Metall. 1, 22 (1953)

    Article  CAS  Google Scholar 

  10. T. Metzger, R. Hopler, E. Born, and S. Christiansen, Phys. Stat. Sol. A 162, 529 (1997)

    Article  CAS  Google Scholar 

  11. H.Wang, J. Zhang, C. Chen, Q. Fareed, and J. Yang, Appl. Phys. Lett., 81, 605 (2002)

    Google Scholar 

  12. H. Heinke, V. Kirchner, S. Einfeldt, and D. Hommel, Phys. Stat. Sol. A 172, 391 (1999)

    Article  Google Scholar 

  13. P.Bhattacharya, Semiconductor Optoelectronic Devices, (1997), p.5

  14. S. Molina, A. Sanchez, F. Pacheco, and R. Garcia, Appl. Phys. Lett. 74, 3362 (1999)

    Article  CAS  Google Scholar 

  15. L. Kirste, D. Ebling, C. Haug, and K. Tillmann, Mater. Sci. Eng., B 82 9 (2001)

  16. B. Bennett, Appl. Phys. Lett. 73, 3736 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ferguson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, H., Spencer, N., Nicol, D. et al. X-Ray Diffraction Analysis of GaN and AlGaN. MRS Online Proceedings Library 743, 612 (2002). https://doi.org/10.1557/PROC-743-L6.12

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-743-L6.12

Navigation