Skip to main content
Log in

Atomic Self-Ordering in Heteroepitaxially Grown Semiconductor Quantum Dots Due to Relaxation of External Lattice Mismatch Strains

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Thermodynamic arguments are presented for the formation of atomic order in heteroepitaxially grown semiconductor quantum dots. From thermodynamics several significant properties of these systems can be derived, such as an enhanced critical temperature of the disorder-order transition, the possible co-existence of differently ordered domains of varying size and orientation, the possible existence of structures that have not been observed before in semiconductors, the occurrence of atomic order over time, and the occurrence of short range order when the growth proceeds at low temperatures. Transmission electron microscopy results support these predictions. Finally, we speculate on the cause for the observed increase in life time of (In,Ga)As/GaAs quantum dot lasers [H-Y. Liu et al., Appl. Phys. Lett. 79, 2868 (2001)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.P. Pearsall (editor), “Quantum Semiconductor Devices and Technologies”, (Kluwer Academic Publishers, 2000).

    Book  Google Scholar 

  2. H.J. Kim and Y.H. Xie, Appl. Phys. Lett. 79, 263 (2001).

    Article  CAS  Google Scholar 

  3. P.B. Joyce, P.B. Joyce and T.J. Krzyzewski, G.R. Bell, B.A. Joyce, and T.S. Jones, Phys. Rev. B 58, R15981 (1998).

    Article  CAS  Google Scholar 

  4. M. Strassburg, V. Kutzer, U. W. Pohl, A. Hoffmann, I. Broser, N. N. Ledentsov, D. Bimberg, A. Rosenauer, U. Fischer, D. Gerthsen, I. L. Krestnikov, M. V. Maximov, P. S. Kop’ev, and Zh.I. Alferov, Appl. Phys. Lett. 72, 942 (1998).

    Article  CAS  Google Scholar 

  5. T. Walter A.G. Cullis, D.J. Norris, and M. Hopkinson, Phys. Rev. Lett. 86, 2381 (2001).

    Article  Google Scholar 

  6. P. Möck, T. Topuria, N.D. Browning, M. Dobrowolska, S. Lee, J.K. Furdyna, G.R. Booker, N.J. Mason, and R.J. Nicholas, Appl. Phys. Lett. 79, 946 (2001).

    Article  Google Scholar 

  7. P. Möck, T. Topuria, N.D. Browning, L. Titova, M. Dobrowolska, S. Lee and J.K. Furdyna, J. Electron. Mater. 30, 748 (2001).

    Article  Google Scholar 

  8. P. Möck, T. Topuria, N.D. Browning, G.R. Booker, N.J. Mason, R.J. Nicholas, L.V. Titova, M. Dobrowolska, S. Lee and J.K. Furdyna, Mater. Res. Soc. Symp. 640, P6.3.1 (2000).

    Google Scholar 

  9. T. Topuria, P. Möck, N.D. Browning, L.V. Titova, M. Dobrowolska, S. Lee and J.K. Furdyna, Mater. Res. Soc. Symp. 640, P 8.3.1 (2000).

    Google Scholar 

  10. N. Marzari, S. de Gironcoli, and S. Baroni, Phys. Rev. Lett. 72, 4001 (1994).

    Article  CAS  Google Scholar 

  11. D.B. Lanks, S-H. Wei, and A. Zunger, Phys. Rev. Lett. 69, 3766 (1992).

    Article  Google Scholar 

  12. A. Zunger and S. Mahajan, “Atomic ordering and phase separation in epitaxial III-V alloys ”, in Handbook on Semiconductors (Elsevier Science B.V., 1994), Ed. T.S. Moss, Vol.3, Volume Ed. S. Mahajan, pp. 1447–1514.

    Google Scholar 

  13. H-Y. Liu, B. Xu, Y-Q Wei, D. Ding, J-J. Qian, Q. Han, J-B Liang, and Z-G. Wang, Appl. Phys. Lett. 79, 2869 (2001).

    Google Scholar 

  14. W.L. Bragg and E.J. Williams, Proc. Roy. Soc. (London) A 145, 699 (1934).

    CAS  Google Scholar 

  15. H.A. Bethe, Proc. Roy. Soc. (London) A150, 552 (1935).

    Google Scholar 

  16. L.A. Girifalco and D.O. Welch, “Point Defects and Diffusion in Strained metals ”, (Gordon and Breach, 1967).

    Google Scholar 

  17. O. Madelung, ed. “Semiconductors Group IV Elements and III-V Compounds, Data in Science and Technology” (Springer, 1991)

    Google Scholar 

  18. Internet based semiconductor data base at http://www.ioffe.rssi.ru/SVA/NSM/Semicond/InP/thermal.html. At the date this paper was written, this URL was deemed to be useful as source of data. Neither the author nor the Materials Research Society warrants or assures liability for the content or availably of this URL.

  19. A.H. Cottrell, “Theoretical Structural Metallurgy”, (Edward Arnold Publ. 1965).

    Google Scholar 

  20. W. Seifert, chapter 14 in ref. [1], pp. 139–181.

  21. P. Möck, G.R. Booker, N.J. Mason, E. Alphandéry, and R.J. Nicholas, IEE Proc.-Optoelectron. 147, 209 (2000), and unpublished material.

    Article  Google Scholar 

  22. E. Alphandéry, R.J. Nicholas, N.J. Mason, P. Möck, and G.R. Booker, Appl. Phys. Lett. 74, 2041 (1999).

    Article  Google Scholar 

  23. C.S. Kim, M. Kim, S. Lee, J.K. Furdyna, M. Dobrowolska, H. Rho, L.M. Smith, H.E. Jackson, E.M. James, Y. Xin and N.D. Browning, Phys. Rev. Lett. 85, 1124 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Möck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Möck, P., Topuria, T., Browning, N.D. et al. Atomic Self-Ordering in Heteroepitaxially Grown Semiconductor Quantum Dots Due to Relaxation of External Lattice Mismatch Strains. MRS Online Proceedings Library 707, 39 (2001). https://doi.org/10.1557/PROC-707-N8.8.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-707-N8.8.1

Navigation