Skip to main content
Log in

Three-dimensional calculation of field emission from carbon nanotubes using a transfermatrix methodology

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We present simulations of field emission from carbon nanotubes, using a transfer-matrix methodology. By repeating periodically a basic unit of the nanotubes in the region preceding that containing the extraction field, specific band-structure effects are included in the distribution of incident states, i.e. those entering the field region. The structures considered are the metallic (5,5) and the semiconducting (10,0) single-wall carbon nanotubes. The total-energy distributions of incident states show the gap of the (10,0) and the expected flat region for the (5,5) nanotube. The field-emitted electron energy distributions contain peaks, which are sharper for the (10,0) structure. Except for peaks associated with van Hove singularities in the distribution of incident states or with the Fermi level in the case of a metallic structure, all peaks are shifted to lower energies by the electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.A. de Heer, A. Chatelain and D. Ugarte, Science 270, 1179 (1995).

    Google Scholar 

  2. J.M. Bonard, J.P. Salvetat, T. Stockli, L. Forro and A. Chatelain, Appl. Phys. A 69, 245 (1999) and references therein.

    Google Scholar 

  3. M.J. Fransen, Th.L. van Rooy and P. Kruit, Appl. Surf. Sci. 146, 312 (1999) and references therein.

    Google Scholar 

  4. P.G. Collins and A. Zettl, Phys. Rev. B 55(15), 9391–9 (1997).

    Google Scholar 

  5. Ch. Adessi and M. Devel, Phys. Rev. B 62 (20), 13314–7 (2000).

    Google Scholar 

  6. T. Tamura and M. Tsukada, Phys. Rev. B 52 (8), 6015–26 (1995).

    Google Scholar 

  7. D.L. Carroll, P. Redlich, P.M. Ajayan, J.C. Charlier, X. Blase, A. De Vita and R. Car, Phys. Rev. Lett. 78 (14), 2811–4 (1997).

    Google Scholar 

  8. A. De Vita, J.Ch. Charlier, X. Blase and R. Car, Appl. Phys. A 68, 283 (1999).

    Google Scholar 

  9. Ph. Kim, T. Odom, J.L. Huang and C.M. Lieber, Phys. Rev. Lett. 82 (6), 1225–8 (1999).

    Google Scholar 

  10. S. Han and J. Ihm, Phys. Rev. B 61, 9886 (2000).

    Google Scholar 

  11. A. Mayer, P. Senet and J-P. Vigneron, J. Phys. Condens. Mat. 11 (44), 8617–31 (1999).

    Google Scholar 

  12. A. Mayer and J.-P. Vigneron, Phys. Rev. B 56 (19), 12599–607 (1997).

    Google Scholar 

  13. A. Mayer and J.-P. Vigneron, J. Phys. Condens. Mat. 10 (4), 869–81 (1998); Phys. Rev. B 60 (4), 2875-82 (1999); Phys. Rev. E 59 (4), 4659-66 (1999); Phys. Rev. E 61 (5), 5953-60 (2000).

    Google Scholar 

  14. G.B. Bachelet, H.S. Greenside, G.A. Baraff and M. Schluter, Phys. Rev. B 24 (8), 4745–52 (1981).

    Google Scholar 

  15. P.A. Gravil, Ph. Lambin, G. Gensterblum, L. Henrard, P. Senet, A.A. Lucas, Surf. Sci 329, 199 (1995).

    Google Scholar 

  16. R. Moussaddar, A. Charlier, E. McRae, R. Heyd and M.F. Charlier, Synthetic Metals 89, 81–86 (1997).

    Google Scholar 

  17. A. Maiti, C.J. Brabec, C. Roland and J. Bernholc, Phys. Rev. B 52 (20), 14850–8 (1995).

    Google Scholar 

  18. L. Lou and P. Nordlander, Phys. Rev. B 52 (3), 1429–32 (1995).

    Google Scholar 

  19. R.H. Fowler and L. Nordheim, Proc. R. Soc. London, Ser. A 119, 173 (1928)

    Google Scholar 

  20. J.M. Ziman, Principles of the theory of solids (The University Press, Cambridge, 1964) p.46.

    Google Scholar 

  21. K.A. Dean, O. Groening, O.M. Kuttel and L. Schlapbach, App. Phys. Lett. 75 (18), 2773–5 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, A., Miskovsky, N.M. & Cutler, P.H. Three-dimensional calculation of field emission from carbon nanotubes using a transfermatrix methodology. MRS Online Proceedings Library 675, 6101 (2001). https://doi.org/10.1557/PROC-675-W6.10.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-675-W6.10.1

Navigation