Skip to main content
Log in

A Model to Interpret the Raman Spectra of Disordered, Amorphous and Nanostructured Carbons

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Raman spectroscopy is a very popular, non-destructive tool for the structural characterisation of carbons. Raman scattering from carbons is always a resonant process, in which those configurations whose band gaps match the excitation energy are preferentially excited. The Raman spectra of carbons do not follow the vibration density of states, but consist of three basic features, the G and D peaks around 1600 and 1350 cm-1 and an extra T peak, for UV excitation, at ~980-1060 cm-1. TheRaman spectra at any wavelength depend on 1) clustering of the sp2 phase, 2)bond length and bond angle disorder, 3) presence of sp2 rings or chains, and 4) the sp2/sp3 ratio. It will be shown how the basic features of the Raman spectra vary by rationalising them within a three-stage model of order of carbons. It is shown how the three-stage model can account for the vast range of experimental data available for Raman experiments at any excitation wavelength. This model can also account for apparently contradictory trends reported in literature, since the clustering of the sp2 phase and the sp3 to sp2 conversion are separately treated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Robertson, Prog. Solid State Chem 21, 199 (1991); Pure Appl. Chem. 66, 1789 (1994) J.Robertson, Adv. Phys.35, 317 (1986)

    Google Scholar 

  2. M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, New York, 1996.

    Google Scholar 

  3. F. Tuinstra and J. L. Koening, J. Chem. Phys. 53, 1126 (1970)

    Google Scholar 

  4. R. J. Nemanich, S. A. Solin, Phys. Rev. B, 20, 329 (1979)

    Google Scholar 

  5. P. Lespade, A. Marchard, M. Couzi, F. Cruege, Carbon 22, 375 (1984)

    Google Scholar 

  6. M. A. Tamor, W. C. Vassel, J. Appl. Phys. 76, 3823 (1994)

    Google Scholar 

  7. A. C. Ferrari, J. Robertson, Phys. Rev. B, 61, 14095 (2000)

    Google Scholar 

  8. A.M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, M. S. Dresselhaus, Science, 75, 187 (1997)

    Google Scholar 

  9. D. S. Bethune, G. Meijer, W. C. Tang, H. J. Rosen, W. G. Golden, H. Seki, C. A. Brown, M. S. De Vries, Chem. Phys. Lett. 179, 181 (1991)

    Google Scholar 

  10. S.D.M. Brown, P. Corio, A. Marucci, M. A. Pimenta, M. S. Dresselhaus, G. Dresselhaus, Phys. Rev. B, 61, 7734 (2000)

    Google Scholar 

  11. S. D. M. Brown, P. Corio, A. Marucci, M. S. Dresselhaus, M. A. Pimenta, K. Kneipp, Phys. Rev. B, 61, R5137 (2000)

    Google Scholar 

  12. A.C. Ferrari, J. Robertson, Phys. Rev. B, submitted (2000)

    Google Scholar 

  13. A.C. Ferrari, J. Robertson, Phys. Rev. B63, 121405(R) (2001).

    Google Scholar 

  14. K. W. K. Gilkes, H. S. Sands, D. N. Batchelder, J. Robertson, W. I. Milne, Appl. Phys. Lett. 70, 1980 (1997)

    Google Scholar 

  15. V. I. Merkulov, J. S. Lannin, C. H. Munro, S. A. Asher, V. S. Veerasamy, W. I. Milne, Phys. Rev. Lett. 78, 4869 (1997)

    Google Scholar 

  16. K. W. R. Gilkes, S. Prawer, K. W. Nugent, J. Robertson, H. S. Sands, Y. Lifshitz, X. Shi, J. Appl. Phys. 87, 7283 (2000)

    Google Scholar 

  17. I. Pocsik, M. Hundhausen, M. Koos, L. Ley, J. Non-Cryst. Solids 227 230, 1083 (1998)

    Google Scholar 

  18. M. J. Matthews, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, and M. Endo, Phys. Rev. B, 59, 6585 (1999)

    Google Scholar 

  19. A.V. Baranov, A.N. Bekhterev, Y. S. Bobovich, V. I. Petrov, Opt. Spectrosc. 62, 612 (1987)

    Google Scholar 

  20. C. Thomsen, S. Reich, Phys. Rev. Lett. 85, 5214 (2000).

    Google Scholar 

  21. C. Mapelli, C. Castiglioni, G. Zerbi, K. Mullen, Phys. Rev. B, 60, 12710 (2000)

    Google Scholar 

  22. C. Castiglioni, C. Mapelli, F. Negri, and G. Zerbi, J. Chem. Phys. 114, 963 (2001)

    Google Scholar 

  23. M.C. Castiglioni, G. Zerbi and F. Negri, J. Mol. Structure, to be published (2001).

    Google Scholar 

  24. N.M.J. Conway, A.C. Ferrari, A. J. Flewitt, J. Robertson, W.I. Milne, A. Tagliaferro, W. Beyer, Diam. Relat. Mater. 9, 765 (2000)

    Google Scholar 

  25. A. Ilie, A. C. Ferrari, T. Yagi, J. Robertson, Appl. Phys. Lett. 76, 2627 (2000)

    Google Scholar 

  26. R. P. Vidano, D. B. Fishbach, L. J. Willis, T. M. Loehr, Solid. State Comm. 39, 341 (1981)

    Google Scholar 

  27. P. Tan, Y. Deng, Q. Zhao, Phys. Rev. B, 58, 5435 (1998)

    Google Scholar 

  28. Z. Wang, X. Huang, R. Xue, L. Chen, J.Appl. Phys. 84, 227 (1998)

    Google Scholar 

  29. Y. Kawashima and G. Katagiri, Phys. Rev. B, 52, 10053 (1995)

    Google Scholar 

  30. K. Sinha and J. Menendez, Phys. Rev. B 41, 10845 (1990)

    Google Scholar 

  31. Y. Wang, D. C. Alsmeyer, R. L. McCreery, Chem. Mater. 2, 557 (1990)

    Google Scholar 

  32. I. Pocsik, M. Koos, M. Hundhausen, L. Ley, in Amorphous Carbon: State of the Art, ed. by S. R. P. Silva et al. (Word Scientific, Singapore, 1998), p.224

    Google Scholar 

  33. T. Kohler, T. Frauenheim, G. Jungnickel, Phys. Rev. B 52, 11837 (1995)

    Google Scholar 

  34. D. A. Drabold, P. A. Fedders and P. Strumm, Phys. Rev. B 49, 16415 (1994)

    Google Scholar 

  35. G P Lopinski, V I Merkulov, J S Lannin, App Phys Lett 693348 (1996)

    Google Scholar 

  36. J. R. Shi, X. Shi, Z. Sun, E. Liu, B. K. Tay, S. P. Lau, Thin Solid Films 366, 169 (2000)

    Google Scholar 

  37. F. Mauri, A. Del Corso, Appl. Phys. Lett. 75, 644 (1999)

    Google Scholar 

  38. A.C. Ferrari, A. Libassi, B.K. Tanner, V. Stolojan, J. Yuan, L. M. Brown, S. E. Rodil, B. Kleinsorge, J. Robertson, Phys. Rev. B 62, 11089 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, A.C. A Model to Interpret the Raman Spectra of Disordered, Amorphous and Nanostructured Carbons. MRS Online Proceedings Library 675, 1151 (2001). https://doi.org/10.1557/PROC-675-W11.5.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-675-W11.5.1

Navigation