Skip to main content
Log in

Synthesis of Ultrathin Ta-C Films by Twist-Filtered Cathodic Arc Carbon Plasmas

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The application of cathodic-arc-deposited films has been very slow due to the infamous macroparticle problem. We report about the application of the open Twist Filter as the key component to an advanced filtered cathodic arc system. Ultrathin tetrahedral amorphous carbon (ta-C) films have been deposited on 6 inch wafers. Film propertieshave been investigated with respect to application in the magnetic data storage industry. Films can be deposited in a reproducible manner where film thickness control relies on arc pulse counting once deposition rates have been calibrated. Films of 3 nm thickness have been deposited that passed acid and Battelle corrosion tests. Monte Carlo Simulation of energetic carbon deposition shows the formation of an intermixed transition layer of about 1 nm. The simulation indicates that because the displacement energy of carbon isnot smaller than of magnetic materials, films thinner than 2 nm are either not high in sp3 content or represent a carbidic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Wei, B. Zhang, and K. E. Johnson, J. Appl. Phys., vol. 83, pp.2491–2499, 1998.

    Google Scholar 

  2. A. Stanishevsky, Chaos, Solitons & Fractals, vol. 10, pp.2045–2066, 1999.

    Google Scholar 

  3. M. Bai, K. Kato, N. Umehara, Y. Miyake, J. Xu, and H. Tokisue, Surf. & Coat. Technol., vol. 126, pp.181–194, 2000.

    Google Scholar 

  4. J. R. Shi, X. Shi, Z. Sun, E. Liu, B. K. Tay, and X. Z. Jin, Int. J. Mod. Phys. B, vol. 14, pp.315–320, 2000.

    Google Scholar 

  5. O. R. Monteiro, M.-P. Delplancke-Ogletree, and I. G. Brown, Thin Solid Films, vol. 342, pp.100–107, 1999.

    Google Scholar 

  6. H. Tsai and D. B. Bogy, J. Vac. Sci. Technol. A, vol. 5, pp.3287–3312, 1987.

    Google Scholar 

  7. C. S. Bhatia, W. Fong, C. Y. Chen, J. Wei, D. Bogy, S. Anders, T. Stammler, and J. Stöhr, IEEE Trans. Magnetics, vol. 35, pp.910–915, 1999.

    Google Scholar 

  8. P. R. Goglia, J. Berkowitz, J. Hoehn, A. Xidis, and L. Stover, Diamond Rel. Mat., vol. 10, pp.271–277, 2001.

    Google Scholar 

  9. X. D. Li and B. Bhushan, J. Mat. Res., vol. 14, pp.2328–2337, 1999.

    Google Scholar 

  10. X. Li and B. Bhushan, Thin Solid Films, vol. 355 356, pp.330–336, 1999.

    Google Scholar 

  11. S. Anders, C. S. Bhatia, W. Fong, R. Y. Lo, and D. B. Bogy, Mat. Res. Soc. Symp. Proc., vol. 517, pp.371–382, 1998.

    Google Scholar 

  12. I. G. Brown, Rev. Sci. Instrum., vol. 65, pp.3061–3081, 1994.

    Google Scholar 

  13. A. Anders, IEEE Trans. of Plasma Sci., vol. 29, pp. in print,2001.

  14. G. Y. Yushkov, A. Anders, E. M. Oks, and I. G. Brown, J. Appl. Phys., vol. 88, pp.5618–5622, 2000.

    Google Scholar 

  15. J. Kutzner and H. C. Miller, J. Phys. D: Appl. Phys., vol. 25, pp.686–693, 1992.

    Google Scholar 

  16. P. J. Fallon, V. S. Veerasamy, C. A. Davis, J. Robertson, G. A. J. Amaratunga, W. I. Milne, and J. Koskinen, Phys. Rev. B, vol. 48, pp.4777–4782, 1993.

    Google Scholar 

  17. O. Monteiro and A. Anders, IEEE Trans. Plasma Sci., vol. 27, pp.1030–1033, 1999.

    Google Scholar 

  18. D. M. Sanders, D. B. Boercker, and S. Falabella, IEEE Trans. Plasma Sci., vol. 18, pp.883–894, 1990.

    Google Scholar 

  19. R. L. Boxman, V. Zhitomirsky, B. Alterkop, E. Gidalevitch, I. Beilis, M. Keidar, and S. Goldsmith, Surf. & Coat. Technol, vol. 86 87, pp.243–253, 1996.

    Google Scholar 

  20. R. L. Boxman and S. Goldsmith, Surf. & Coat. Technol., vol. 52, pp.39–50, 1992.

    Google Scholar 

  21. A. Anders, Surf. & Coat. Technol., vol. 120 121, pp.319–330, 1999.

    Google Scholar 

  22. I. I. Aksenov, V. A. Belous, and V. G. Padalka, Instrum. Exp. Tech., vol. 21, pp.1416–1418, 1978.

    Google Scholar 

  23. D. A. Baldwin and S. Fallabella, “Deposition processes utilizing a new filtered cathodic arc source,” Proc. of the 38th Annual Techn. Conf., Society of Vacuum Coaters, Chicago, 1995, pp.309–316.

    Google Scholar 

  24. S. Anders, A. Anders, M. R. Dickinson, R. A. MacGill, and I. G. Brown, IEEE Trans. Plasma Sci., vol. 25, pp.670–674, 1997.

    Google Scholar 

  25. T. Witke, T. Schuelke, B. Schultrich, P. Siemroth, and J. Vetter, Surf. & Coat. Technol, vol. 126, pp.81–88, 2000.

    Google Scholar 

  26. R. P. Welty, “Rectangular vacuum-arc plasma source.” USA: Vapor Technologies, Inc., 1996.

    Google Scholar 

  27. V. Gorokhovsky, “Apparatus for Application of Coatings in Vacuum, Rectangular Filter.”US, 1995.

    Google Scholar 

  28. X. Shi, B. K. Tay, H. S. Tan, E. Liu, J. Shi, L. K. Cheah, and X. Jin, Thin Solid Films, vol. 345, pp.1–6, 1999.

    Google Scholar 

  29. X. Shi, B. G. Tay, and S. P. Lau, Int. J. Mod. Phys. B, vol. 14, pp.136–153, 2000.

    Google Scholar 

  30. J. Storer, J. E. Galvin, and I. G. Brown, J. Appl. Phys., vol. 66, pp.5245–5250, 1989.

    Google Scholar 

  31. J. Koskinen, A. Anttila, and J.-P. Hirvonen, Surf. Coat. Technol, vol. 47, pp.180–187, 1991.

    Google Scholar 

  32. A. Anttila, J. Salo, and R. Lappalainen, Mat. Letters, vol. 24, pp.153–156, 1995.

    Google Scholar 

  33. A. Anders and R. A. MacGill, Surf. & Coat. Technol, pp. presented at the 27th ICMCTF, San Diego, april 10–14, 2000.,2000.

    Google Scholar 

  34. A. Anders, I. G. Brown, R. A. MacGill, and M. R. Dickinson, J. Phys. D: Appl. Phys., vol. 31, pp.584–587, 1998.

    Google Scholar 

  35. W. Fong, “Fabrication and evaluation of 5 nm cathodic-arc carbon films for disk drive applications,” in Department of Mechanical Engineering, Computer Mechanics Laboratory. Berkeley, CA: University of California at Berkeley, 1999.

    Google Scholar 

  36. A. Anders, F. R. Ryan, W. Fong, and C. S. Bhatia, “Ultrathin diamondlike carbon films deposited by filteredcarbon vacuum arcs,” IXX Int. Symp. on Discharges and Electrical Insulation in Vacuum, Xi’an, P.R. China, 2000, pp. accepted for publication in IEEE Trans. Plasma Sci. (2001).

    Google Scholar 

  37. G. M. Pharr, D. L. Callahan, D. McAdams, T. Y. Tsui, S. Anders, A. Anders, J. W. Ager, I.G. Brown, C. S. Bhatia, S. R. P. Silva, and J. Robertson, Appl. Phys. Lett, vol. 68, pp.779–781, 1996.

    Google Scholar 

  38. D. Schneider, T. Witke, T. Schwarz, B. Schöneich, and B. Schultrich, Surf. & Coat. Technol., vol. 126, pp.136–141, 2000.

    Google Scholar 

  39. J. M. Schneider, Appl. Phys. Lett, vol. 76, pp.1531–1533, 2000.

    Google Scholar 

  40. J. M. Schneider, A. Anders, B. Hjörvarsson, I. Petrov, K. Macak, U. Helmerson, and J.-E. Sundgren, Appl. Phys. Lett, vol. 74, pp.200–202, 1999.

    Google Scholar 

  41. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids. New York: Pergamon Press, 1985.

    Google Scholar 

  42. J. P. Biersack, Nucl. Instrum. Meth. Phys. Res. B, vol. 59 60, pp.21–27, 1991.

    Google Scholar 

  43. M. Nastasi, J. W. Mayer, and J. K. Hirvonen, Ion-Solid Interactions. Cambridge, UK: Cambridge University Press, 1996. 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anders, A., Kulkarni, A.V. Synthesis of Ultrathin Ta-C Films by Twist-Filtered Cathodic Arc Carbon Plasmas. MRS Online Proceedings Library 675, 1111 (2001). https://doi.org/10.1557/PROC-675-W11.1.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-675-W11.1.1

Navigation