Skip to main content
Log in

Nanocrystal Quantum Dots: Building Blocks for Tunable Optical Amplifiers and Lasers

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We study optical processes relevant to optical amplification and lasing in CdSe nanocrystal quantum dots (NQD). NQDs are freestanding nanoparticles prepared using solution-based organometallic reactions originally developed for the Cd chalcogenides, CdS, CdSe and CdTe [J. Am. Chem. Soc. 115, 8706 (1993)]. We investigate NQDs with diameters ranging from 2 to 8 nm. Due to strong quantum confinement, they exhibit size-dependent spectral tunability over an energy range as wide as several hundred meV. We observe a strong effect of the matrix/solvent on optical gain properties of CdSe NQDs. In most of the commonly used solvents (such as hexane and toluene), gain is suppressed due to strong photoinduced absorption associated with carriers trapped at solvent-related interface states. In contrast, matrix-free close packed NQD films (NQD solids) exhibit large optical gain with a magnitude that is sufficiently high for the optical gain to successfully compete with multiparticle Auger recombination [Science 287, 10117 (2000)]. These films exhibit narrowband stimulated emission at both cryogenic and room temperature, and the emission color is tunable with dot size [Science 290, 314 (2000)]. Moreover, the NQD films can be incorporated into microcavities of different geometries (micro-spheres, wires, tubes) that produce lasing in whispering gallery modes. The facile preparation, chemical flexibility and wide-range spectral tunability due to strong quantum confinement are the key advantages that should motivate research into NQD applications in optical amplifiers and lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Asada, Y. Miyamoto, and Y. Suematsu, IEEE J. Quantum Electron. QE-22, 1915 (1986).

    Article  CAS  Google Scholar 

  2. N. N. Ledentsov, et al., Semiconductors 28, 832 (1994).

    Google Scholar 

  3. N. Kistaedter et al., Electron. Lett. 30, 1416 (1994).

    Article  Google Scholar 

  4. M. Grundman, Physica E 5, 167 (2000).

    Article  Google Scholar 

  5. C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).

    Article  CAS  Google Scholar 

  6. V. Klimov and D. McBranch, Opt. Lett. 23, 277 (1998).

    Article  CAS  Google Scholar 

  7. V. I. Klimov, Ch. J. Schwarz, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, Phys. Rev. B 60, R2177 (1999).

    Article  CAS  Google Scholar 

  8. V. I. Klimov, A. A. Mikhailovsky, Su Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, Science 290, 314 (2000).

    Article  CAS  Google Scholar 

  9. M. Nirmal et al., Phys. Rev. Lett. 75, 3728 (1995).

    Article  CAS  Google Scholar 

  10. V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, Science 287, 10117 (2000).

    Article  Google Scholar 

  11. D. Chepic, A. L. Efros, A. Ekimov, M. Ivanov, V. A. Kharchenko, and I. Kudriavtsev, J. Luminescence 47, 113 (1990).

    Article  Google Scholar 

  12. In progress.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollingsworth, J.A., Mikhailovsky, A.A., Malko, A. et al. Nanocrystal Quantum Dots: Building Blocks for Tunable Optical Amplifiers and Lasers. MRS Online Proceedings Library 667, 61 (2000). https://doi.org/10.1557/PROC-667-G6.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-667-G6.1

Navigation