Skip to main content
Log in

Auger Recombination in Antimony-Based, Strain-Balanced, Narrow-Band-Gap Superlattics

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Time-resolved all-optical techniques are used to measure the density and temperature dependence of electron-hole recombination in an InAs/GaInSb/InAs/AlGaInAsSb strain-balanced superlattice grown by molecular beam expitaxy on GaSb. This 4 μm bandgap structure, which has been designed for suppressed Auger recombination, is a candidate material for the active region of mid-infrared lasers. While carrier lifetime measurements at room temperature show unambiguous evidence of Auger recombination, the extracted Auger recombination rates are considerably lower than those reported for bulk materials of comparable bandgap energy. We find that the Auger rate saturates at carrier densities comparable to those required for degeneracy of the valence band, illustrating the impact of Fermi statistics on the Auger process. The measured results are compared with theoretical Auger rates computed using a band structure obtained from a semi-empirical 8-band K.p model. We find excellent agreement between theoretical and experimental results when Umklapp processes in the growth direction are included in the calculation. Measured recombination rates from 50 to 300 K are combined with calculated threshold carrier densities to determine a material To value for the superlattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Michael E. Flatté, J. T. Olesberg, S. A. Anson, Thomas F. Boggess, T. C. Hasenberg. R. H. Miles, and C. H. Grein, Appl. Phys. Lett. 70, 3212 (1997).

    Article  Google Scholar 

  2. Michael E. Flatté, T. C. Hasenberg. J. T. Olesberg, S. A. Anson, Thomas F. Boggess, Chi Yan, and D. L. McDaniel, Jr., Appl. Phys. Lett. 71, 3764 (1997).

    Article  Google Scholar 

  3. S. W. McCahon, S. A. Anson, D.-J. Jang, M. E. Flatté, Thomas F. Boggess, D. H. Chow, T. C. Hasenberg, and C. H. Grein, Appl. Phys. Lett. 68, 2135 (1996).

    Article  Google Scholar 

  4. D.-J. Jang, J. T. Olesberg, M. E. Flatté, Thomas F. Boggess, and T. C. Hasenberg, Appl. Phys. Lett. 70, 1125 (1997).

    Article  CAS  Google Scholar 

  5. W. McCahon, S. A. Anson, D.-J. Jang, and Thomas F. Boggess, Opt. Lett. 20, 2309 (1995).

    Article  Google Scholar 

  6. K. L. Vodopyanov, H. Graener, C. C. Phillips, and T. J. Tate, Phys. Rev. B 46, 13194 (1992).

    Article  CAS  Google Scholar 

  7. V. Chazapis, H. A. Blom, K. L. Vodopyanov, A. G. Norman, and C. C. Phillips, Phys. Rev. B 52, 2516 (1995).

    Article  CAS  Google Scholar 

  8. J. T. Olesberg, S. A. Anson, S. W. McCahon, Michael E. Flatté, Thomas F. Boggess, D. H. Chow, and T. C. Hasenberg, Appl. Phys. Lett. 72, 229 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported in part by the U.S. Air Force, Air Force Materiel Command, Phillips Laboratory (PL), Kirtland AFB, NM 87117-5777 (Contract No. F29601-97-C0041) and the National Foundation (Grant Nos. ECS-9406680 and ECS-97-07799).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olesberg, J.T., Boggess, T.F., Anson, S.A. et al. Auger Recombination in Antimony-Based, Strain-Balanced, Narrow-Band-Gap Superlattics. MRS Online Proceedings Library 484, 83–88 (1997). https://doi.org/10.1557/PROC-484-83

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-484-83

Navigation