Skip to main content
Log in

Monolithically Integrated Dual-Band Quantum Well Infrared Photodetector

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

A monolithic quantum well infrared photodetector (QWIP) structure has been presented that is suitable for dual bands in the two atmospheric transmission windows of 3 - 5.3 fum and 7.5 - 14fum, respectively. The proposed structure employs dual stacked, strain InGaAs/AlGaAs and latticematched GaAs/AlGaAs quantum well infrared photodetector for mid wavelength and long wavelength detection. The response peak of the strain InGaAs/AlGaAs quantum well is at 4.9 fum and the lattice-matched GaAs/AlGaAs is at 10.5fum; their peak sensitivities are in the spectral regions of 3 - 5.3fum and 7.5 - 14fum. The peak responsivity when the dual-band QWIP is biased at 5 Volts is ∼0.065A/W at 4.9fum and ∼0.006A/W at 10.5fum; at this voltage the dual-band QWIP is more sensitive at the shorter wavelengths due to its larger impedance thus exhibiting wavelength tunability characteristics with bias. Additionally, single colored 4.9 and 10.5fum QWIPs were fabricated from the dual-band QWIP structure to study the bias-dependent behavior and also to understand the effects of growing the strain layer InGaAs/AlGaAs QWIP on top of the lattice-matched GaAs/AlGaAs QWIP. In summary, two stack dual-band QWIPs using GaAs/AlGaAs and strained InGaAs/AlGaAs multiquantum wells have been demonstrated with peak spectral sensitivities in the spectral region of 3 - 5.3fum and 7.5 - 14fum. Also, the voltage tunable dual-band detection have been realized for this kind of QWIP structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Konuma, Y Asano, K. Masubuchi, H. Utsumi, S. Tohyama, T. Endo, H. Azuma, and N. Teranishi, IEEE Trans. Electron Devices, 43, 282 (1996).

    Article  Google Scholar 

  2. E.R. Blazejewski, J.M. Arias, G.M. Williams, W. Mclevige, M. Zandian, and J. Pasko, J. Vac. Sci, Technol, B, 10, 1626 (1992).

    Article  CAS  Google Scholar 

  3. M.B. Reine, P.W. Norton, R. Starr, M.H. Weiler, M. Kestigian, B.L. Musicant, P. Mitra, T. Schimert, F.C. Case, I.B. Bhat, H. Ehsani, and V. Rao, J. Electron. Mater, 24, 669 (1995).

    Article  CAS  Google Scholar 

  4. B.F. Levine, J. Appl. Phys. 74, R1 (1993).

    Article  CAS  Google Scholar 

  5. A. Zussman, B.F. Levine, J.M. Kuo, and J. de Jong, J. Appl. Phys. 70, 5101 (1991).

    Article  CAS  Google Scholar 

  6. G. Sarusi, B.F. Levine, S.J. Pearton, S.V. Bandara, and R.E. LeibenguthJ. Appl. Phys. 64, 960 (1994).

    CAS  Google Scholar 

  7. S.D. Gunapala, B.F. Levine, D. Ritter, R.A. Hamn, and M.B. Panish, Appl. Phys. Lett. 58, 2024 (1991).

    Article  CAS  Google Scholar 

  8. D.K. Sengupta, S.L. Jackson, D. Ahmari, H.C. Kuo, J.I. Malin, S. Thomas, M. Feng, and G.E. Stillman, Appl. Phys. Lett. 69, 3209 (1996).

    Article  CAS  Google Scholar 

  9. A. Hiromitou, and K. Yuich, Appl. Phys. Lett. 56, 746 (1990).

    Article  Google Scholar 

  10. M.Z. Tidrow, and K. Bacher, Appl. Phys. Lett. 70, 859 (1997).

    Article  CAS  Google Scholar 

  11. K.L. Tsai, K.H. Chang, C.P. Lee, K.F. Huang, J.S. Tsang, and H.R. Chen, Appl. Phys. Lett. 62, 3504 (1993).

    Article  CAS  Google Scholar 

  12. I. Grave, A. Shakouri, N. Kuze, and A. Yariv, Appl. Phys. Lett. 60, 2362 (1992).

    Article  CAS  Google Scholar 

  13. A. Kock, E. Gornick, G. Abstreiter, G. Bohm, M. Walker, and G. Weimaun, Appl. Phys. Lett. 60, 2011 (1992).

    Article  Google Scholar 

  14. K. Kheng, M. Ramsteiner, H. Schneider, J.D. Ralston, F. Fuchs, and P. Koidl, Appl. Phys. Lett. 61 666 (1992).

    Article  CAS  Google Scholar 

  15. Y.H. Wang, S.S. Li, and P. Ho, Appl. Phys. Lett. 62, 93 (1993).

    Article  CAS  Google Scholar 

  16. E. Martinet, E. Rosencher, F. Luc, Ph. Bois, E. Constard, and S. Delaitre, Appl. Phys. Lett. 61, 246 (1992).

    Article  CAS  Google Scholar 

  17. Y. Zhang, D.S. Jiang, J.B. Xia, L.Q. Song, Z.Q. Zhou, and W.K. Wu, Appl. Phys. Lett. 68, 2114 (1996).

    Article  CAS  Google Scholar 

  18. Personal communication (W.I. Wang).

  19. M.Z. Tidrow, K.K. Choi, A.J. DeAnni, W.H. Chang, and S.P. Svensson, Appl. Phys. Lett. 67, 1800 (1995).

    Article  CAS  Google Scholar 

  20. M.Z. Tidrow, J.C. Chiang, S. li, K. Bacher, Appl. Phys. Lett. 70, 859 (1997).

    Article  CAS  Google Scholar 

  21. H.C. Liu, J. Li, J.R. Thompson, Z.R. Wasilewski, M. Buchanan, and J.G. Simmons, IEEE Electron Device Letters, 14, 566 (1993).

    Article  CAS  Google Scholar 

  22. S.L. Chuang, Physics of Optoelectronics Devices (New York: Wiley, 1995).

    Google Scholar 

  23. H.C. Liu, Z R. Wasilewski, M. Buchanan, and H. Chu, Appl. Phys. Lett. 63, 761 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Research described in this paper was performed by the Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Insitute of Technology, Pasadena, CA 91109 and by the Microelectronics Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801. The authors would also like to acknowledge. Dr. T.N. Krabach and other members of the Microdevices Laboratory (JPL) for encouragement and support during the preparation of this work. The authors would also like to thank Prof. N. Holoynak (UIUC) and Dr. K.K Choi of US Army Research Labs, New Jersey for many helpful discussions. We Would also like to acknowledge J. Park (JPL), B. Payne and M. Day (UIUC), J. Washington, and D. Cuda (JPL) for help with the manuscript preparation. One of the authors (D.K.S) acknowledges the fellowship awarded by National Research Council.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sengupta, D.K., Gunapala, S.D., Bandara, S.V. et al. Monolithically Integrated Dual-Band Quantum Well Infrared Photodetector. MRS Online Proceedings Library 484, 205–214 (1997). https://doi.org/10.1557/PROC-484-205

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-484-205

Navigation