Skip to main content
Log in

Semiconductor Nanocrystals: Exciton Quantum Mechanics, Single Nanocrsytal Luminescence, and Metastable High Pressure Phases

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We review three areas where significant progress has recently occurred in our understanding of semiconductor nanocrystals. The first two involve luminescence properties of single and ensembles of Cadmium Selenide (CdSe) nanocrystallites (Quantum Dots) between 10 and 50 Å in radius. The size, magnetic field, and temporal dependence of emission from ensembles of nanocrystallites at cryogenic temperatures uncovers the fundamental mechanism of radiative recombination in these nanocrystals. Effective mass models that take into account the electron-hole exchange interaction can quantitatively account for observed luminescence Stokes shifts. Furthermore, the magnetic field dependence of luminescence lifetimes and longitudinal-optical (LO) phonon ratios demonstrate that the exciton ground state in these nanocrystals is optically passive (“dark exciton”) with spin projection ±2. Picosecond time resolved measurements probe exciton relaxation into this level. Recent results on the spectroscopy of single CdSe nanocrystals at room temperature are also presented. Remarkably, emission from a single CdSe nanocrystal under C.W illumination is observed to turn on and off discretely (fluorescence intermittency) on a ~0.5s timescale. The excitation intensity dependence, and the influence of a passivating high band gap shell of Zinc Sulfide (ZnS) encapsulating the CdSe nanocrystal on the on/off times, suggest that this phenomenon is caused by photoionization. Finally, the third area originates in diamond anvil studies of the solid-solid phase transitions of nanocrystals under pressure. These studies show that a single nucleation event occurs per nanocrystal, and that as a consequence the nanocrystals change shape. The kinetic activation barrier increases with increasing size. Under suitable conditions nanocrystals in dense, six-coordinate high pressure phases may be metastable at STP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.B. Murray, D.J. Norris and M.G. Bawendi, J. Am. Chem. Soc. 11, 8706 (1993).

    Article  Google Scholar 

  2. M.G. Bawendi, P.J. Carroll, W.L. Wilson and L.E. Brus, J. Chem. Phys. 96, 946 (1992).

    Article  CAS  Google Scholar 

  3. M. Nirmal, C.B. Murray and M.G. Bawendi, Phys. Rev. B 50, 2293 (1994).

    Article  CAS  Google Scholar 

  4. C.H. Henry and H. Nassau, Phys. Rev. B 1, 1628 (1970).

    Article  Google Scholar 

  5. M. O’Neil, J. Marohn, and G. Maclendon, J. Phys. Chem. 94, 4356 (1990); A. Hasselbrath, A. Eychmuller and H. Weller, Chem. Phys. Lett. 203, 271 (1993).

    Article  Google Scholar 

  6. M. Nirmal, D.J. Norris, M. Kuno, M.G. Bawendi, A.I.L. Efros and M. Rosen, Phys. Rev. Lett. 75, 3728 (1995).

    Article  CAS  Google Scholar 

  7. Al.L. Efros, M. Rosen, M. Kuno, M. Nirmal, D.J. Norris and M.G. Bawendi, Phys. Rev. B 54, 4843 (1996).

    Article  CAS  Google Scholar 

  8. P.D.J. Calcott, et al., J. Phys. Condens. Matter 5, L91 (1993).

    Article  CAS  Google Scholar 

  9. M. Nirmal, To be Published.

  10. J.J. Macklin, J.K. Trautman, T.D. Harris and L.E. Brus, Science 272, 255 (1996).

    Article  CAS  Google Scholar 

  11. M. Nirmal, B.O. Dabbousi, M.G. Bawendi, J.J. Macklin, J.K. Trautman, T.D. Harris and L. Brus, Nature 383, 802 (1996).

    Article  CAS  Google Scholar 

  12. W.P. Ambrose, T. Basche and W.E. Moerner, J. Chem. Phys. 95, 7150 (1991).

    Article  CAS  Google Scholar 

  13. J. Bernard, L. Fleury, H. Talon and M. Orrit, J. Chem. Phys. 98, 850 (1993).

    Article  CAS  Google Scholar 

  14. D.I. Chepic et al., J. Lumin. 47, 113 (1990).

    Article  Google Scholar 

  15. P. Rossignol, D. Ricard, J. Lukasik and C. Flytzanis, J. Opt. Soc. Am. B 4, 5 (1987).

    Article  Google Scholar 

  16. M.A. Hines and P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996); A.R. Kortan et al., J. Am. Chem. Soc. 112, 1327 (1990).

    CAS  Google Scholar 

  17. D.J. Norris and M.G. Bawendi, Phys. Rev. B 53, 16338 (1996).

    Article  CAS  Google Scholar 

  18. S. Tolbert and A.P. Alivisatos, Annu. Rev. Phys. Chem. 46, 595 (1995).

    Article  CAS  Google Scholar 

  19. S. Tolbert, A. Herhold, L. Brus and A.P. Alivisatos, Phys. Rev. Lett. 76, 4384 (1996).

    Article  CAS  Google Scholar 

  20. L. Brus, J. Harkless and F. Stillinger, J. Am. Chem. Soc. 118, 4834 (1996).

    Article  CAS  Google Scholar 

  21. C. Chen and A.P. Alivisatos, Private Communication.

  22. H. Volldstadt, E. Ito, M. Akaishi, S. Akimoto and O. Fukunaga, Proc. Jpn. Acad. Ser. B66, 7 (1990); Y Xie, Y. Qian, W. Wang, S. Zhang and Y. Zhang, Science 272, 1926 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nirmal, M., Brus, L.E. Semiconductor Nanocrystals: Exciton Quantum Mechanics, Single Nanocrsytal Luminescence, and Metastable High Pressure Phases. MRS Online Proceedings Library 452, 17–27 (1996). https://doi.org/10.1557/PROC-452-17

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-452-17

Navigation