Skip to main content
Log in

Investigations of Plasma Immersion Ion Implantation Hydrogenation for Poly-Si TFTS Using an Inductively Coupled Plasma Source

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

A plasma immersion ion implantation (Pill) hydrogenation process using an inductively-coupled plasma (ICP) source is implemented for defect passivation in polycrystalline silicon (poly-Si) thin film transistors (TFT’s). Device parameter improvement saturates in 4 minutes, which is considerably shorter than for other reported hydrogenation methods. Stress test indicates that the devices hydrogenated by this novel technique have much better long-term reliability. The hydrogenation effects on two types of trap states are analyzed the current-voltage characteristics of the devices. The densities of deep states and tail states are significantly reduced after short time hydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. I. Kamins and P. J. Marcoux, “Hydrogenation of transistors fabricated in polycrystallinesilicon films, ” IEEE Electron Device Left., vol. 1, no. 8, pp. 159–161, 1980.

    Article  Google Scholar 

  2. I. Wu, T. Huang, W. B. Jackson, A. G. Lewis and A. Chiang, “Passivation kinetics of two types of defects in polysilicon TFT by plasma hydrogenation, ” IEEE Electron Device Lett., vol. 12, no. 4, pp. 181–183, 1991.

    Article  CAS  Google Scholar 

  3. R. A. Ditzio, G. Liu, S. J. Fonash, B. C. Hseih and D. W. Greve, “Short time electron cyclotron resonance hydrogenation of polycrystalline silicon thin film transistor structures, ” Appl. Phys. Lett., vol. 56, no. 123, pp. 1140–1142, 1990.

    Article  Google Scholar 

  4. K. Baert, H. Murai, K. Kobayashi, H. Namizaki and M. Nunoshita, “Hydrogen passivation of polysilicon thin-film transistors by electron cyclotron resonance plasma, ” Jpn. J Appl. Phys., vol. 32, pp. 2601–2606, 1993.

    Article  CAS  Google Scholar 

  5. J. D. Bernstein, S. Qin, C. Chan, and T.-J. King, “Hydrogenation of Polycrystalline Silicon Thin Film Transistors by Plasma Ion Implantation, ” IEEE Electron Device Lett., vol. 16, no. 10, pp. 421–423, 1995.

    Article  CAS  Google Scholar 

  6. S. Qin, J. D. Bernstein, Y. Zhou, W. Liu, C. Chan and T.-J. King, “Short-time Hydrogen Passivation of Poly-Si CMOS Thin Film Transistors by High Dose Rate Plasma Ion Implantation, ” Mater. Res. Soc. Symp. Proc., vol. 396, pp. 515–520, 1996

    Article  CAS  Google Scholar 

  7. M. Cao, T.-J. King, and K. C. Saraswat, “Dtermination of the Densities of Gap States in Hydrogenated Polycrystalline Si and Si0.8 Ge0.2 Films’, Appl. Phys. Left., vol. 61, no. 6, pp. 672–674, 1992.

    Article  CAS  Google Scholar 

  8. K. Ono, T. Aoyama, N. Konishi, and K. Miyata, “Analysis of Current-Voltage Characteristics of Low- Temperature-Processed Polysilicon Thin Film Transistors”, IEEE Trans. on Electron Devices, vol. 39, no. 4, pp. 792–802, 1992.

    Article  CAS  Google Scholar 

  9. J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, Conductivity Behavior in Polycrystalline Semiconductor Thin Film Transistors, ” J Appl. Phys., vol. 53, no. 2, pp. 11931202, 1981.

    Google Scholar 

  10. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping Range of Ions in Solids, Pergamon Press, New York, 1985.

    Google Scholar 

  11. E. H. Nicollian and M. Aucouturier, “Electron Spin Resonance of Hydrogenation Effects in Polycrystalline Silicon, ” Appl. Phys. Lett., vol. 49, pp. 1620, 1986.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Qin, S. & Chan, C. Investigations of Plasma Immersion Ion Implantation Hydrogenation for Poly-Si TFTS Using an Inductively Coupled Plasma Source. MRS Online Proceedings Library 439, 269–274 (1996). https://doi.org/10.1557/PROC-439-269

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-439-269

Navigation