Skip to main content
Log in

Conductive Tungsten-Based Layers Synthesized by Ion Implantation Into 6H-Silicon Carbide

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We studied high dose implantation of tungsten into 6H-silicon carbide in order to synthesize an electrically conductive layer. Implantation was performed at 200 keV with a dose of 1.2×1017 W+cm−2 at temperatures between 200°C and 400°C. The influence of implantation temperature on the distribution of W in SiC was investigated and compared to results obtained earlier from room temperature (RT) and 500°C implants. Rutherford backscattering spectrometry (RBS) was employed to study the structure and composition of the implanted layers. Implantation at temperatures between RT and 300°C did not influence the depth distribution of C, Si and W. The W depth profile shows a conventional Gaussian shape. Implanting at higher temperatures led to a more confined W rich layer in the SiC. This confinement is explained by Ostwald ripening which is enabled during implantation at temperatures above 300°C. The depth of the implantation induced damage decreases slightly with increasing implantation temperature, except for 400°C implantation. The amount of damage, however, is significantly reduced only for implantation at 500°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.E. Nelson, F.A. Halden and A. Rosengreen, J. Appl. Phys. 37, 333 (1966).

    Article  CAS  Google Scholar 

  2. G. Pensl and R. Helbig, Festkörperprobleme/Advances in Solid State Physics 30, 133 (1990).

    CAS  Google Scholar 

  3. J.B. Petit and M.V. Zeller in Wide Band Gap Semiconductors, edited by T.D. Moustaka, J.I. Pankove, and Y. Hamakawa (Mater. Res. Soc. Proc. 242, Pittsburgh, PA, 1992) pp. 567–572.

    CAS  Google Scholar 

  4. R.C. Glass, L.M. Spellman, and R.F. Davis, Appl. Phys. Lett. 59, 2868 (1991).

    Article  CAS  Google Scholar 

  5. M.M. Anikin, M.R. Rastegaeva, A.L. Syrkin, and I.V. Chuiko, Springer Proceedings in Physics 56, 183 (1992).

    Article  CAS  Google Scholar 

  6. J. Crofton, J.M. Ferrero, P.A. Barnes, J.R. Williams, M.J. Bozack, C.C. Tin, C.D. Ellis, J.A. Spitznagel and P.G. McMullin, Springer Proceedings in Physics 71, 176 (1992).

    Article  CAS  Google Scholar 

  7. V.A. Dmitriev, K. Irvine. M. Spencer, and G. Kelner, Appl. Phys. Lett. 64, 318 (1994).

    Article  CAS  Google Scholar 

  8. A. K Chaddha, J.D. Parsons, and G.B. Kruaval, Appl. Phys. Lett. 66, 760 (1995).

    Article  CAS  Google Scholar 

  9. T. Uemoto, Jpn. J. Appl. Phys. 34, L7 (1995).

    Article  CAS  Google Scholar 

  10. J. Crofton, P.G. McMullin, J.R. Williams, and M.J. Bozack, J. Appl. Phys. 77, 1317 (1995).

    Article  CAS  Google Scholar 

  11. L. Baud, C. Jaussaud, R. Madar, C. Bernard, J.S. Chen, and M.A. Nicolet, Mat. Sci. Eng. B29, 126 (1995).

    Article  CAS  Google Scholar 

  12. H. Zhang, PhD thesis, Friedrich Alexander Universitat Erlangen, 1990.

  13. K.M. Geib, C. Wilson, R.G. Long, and C.W. Wilmsen, J. Appl. Phys. 68, 2796 (1990).

    Article  CAS  Google Scholar 

  14. C. Jacob, S. Nishino, M. Mehregany, and P. Pirouz, in Silicon Carbide and Related Materials (Institute of Physics Publishing, Bristol and Philadelphia, 1994) ch.3 p. 247.

    Google Scholar 

  15. H. Weishart, J. Schöneich, H.-J. Steffen, W. Matz, and W. Skorupa in Beam-Solid Interactions for Materials Synthesis and Characterization, edited by D.E. Luzzi, T.F. Heinz, M. Iwaki, and D.C. Jacobson (Mater. Res. Soc. Proc. 354, Pittsburgh, PA, 1995) pp. 177–182, Nucl. Instr. Meth. B112, 338 (1996).

    CAS  Google Scholar 

  16. H. Weishart, W. Matz, and W. Skorupa in III-Nitride. SiC, and Diamond Materials for Electronic Devices, edited by D.K. Gaskill, C. Brandt, and R.J. Nemanich (Mater. Res. Soc. Proc. 423, Pittsburgh, PA, 1997) pp..

  17. R.G. Vardiman, Materials Science and Engineering A177, 209 (1994).

    Article  Google Scholar 

  18. L.R. Doolittle, Nucl. Inst. Meth. B 9, 334 (1985).

    Article  Google Scholar 

  19. J. Heindl, H.P. Strunk, A. Heft, T. Bachmann, E. Glaser, E. Wendler and W. Wesch, Inst. Phys. Conf. Ser. No 146, 435 (1995).

    CAS  Google Scholar 

  20. W. Wesch, A. Heft, E. Wendler, T. Bachmann and E. Glaser, Nuc. Instr. Meth. B96, 335–38 (1995).

    Article  Google Scholar 

  21. A. E White, K.T. Short, R.C. Dynes, J.M. Gibson and R. Hull, Mat. Res. Soc. Symp. Proc. 107, 3 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weishart, H., schöneich, J., Voelskow, M. et al. Conductive Tungsten-Based Layers Synthesized by Ion Implantation Into 6H-Silicon Carbide. MRS Online Proceedings Library 439, 179–184 (1996). https://doi.org/10.1557/PROC-439-179

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-439-179

Navigation