Skip to main content
Log in

Competition Between Gettering by Implantation-Induced Cavities in Silicon and Internal Gettering Associated with SiO2 Precipitation

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The gettering behavior of Cu and Fe was investigated in CZ silicon containing both internal-gettering sites in the bulk due to SiO2 precipitation and a device-side layer of cavities formed by He ion implantation and annealing. The objective was to quantify the effectiveness of impurity gettering at cavities relative to the widely used internal-gettering process. Both rapid thermal anneals and furnace anneals were used during the gettering sequences to reveal transient effects as well as the final, thermodynamically-equilibrated condition. For temperatures of 700, 800 and 850°C, the cavity gettering was observed to dominate the internal gettering as indicated both by the number of gettered atoms in the cavities and the residual solution concentration in the device region. The results are interpreted in detail by numerically solving the diffusion equation with sink-related source terms based on earlier, fundamental studies of the underlying mechanisms of internal and cavity gettering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The National Technology Roadmap for Semiconductors (Semiconductor Industry Assoc., San Jose, CA, 1994), p. 110

  2. Materials Research Society Bulletin (Materials Research Society, Pittsburgh, PA, August 1994)

  3. W.K. Tice and T.Y. Tan, Mater. Res. Soc. Symp. Proc. 2, 367 (1981)

    Article  CAS  Google Scholar 

  4. D. Gilles, E.R. Weber and S.K. Hahn, Phys. Rev. Lett. 64, 196 (1990)

    Article  CAS  Google Scholar 

  5. M. Aoki, A. Itakura and N. Sasaki, Appl. Phys. Lett. 68, 51 (1995)

    Google Scholar 

  6. H. Wong, N.W. Cheung and P.K. Chu, Appl. Phys. Lett. 52, 889 (1988)

    Article  CAS  Google Scholar 

  7. W. Skorupa, R. Kogler, K. Schmalz, P. Gaworzewski, G. Morgenstren and H. Syhre, Nuc. Instr. and Meth. in Phys. Res. B74, 70 (1993)

    Article  CAS  Google Scholar 

  8. M.H.F. Overwijk, J. Politiek, R.C.M.d. Kruif and P.C. Zalm, Nuc. Instr. and Meth. in Phys. Res. B96, 257 (1995)

    Article  Google Scholar 

  9. C.J. Barbero, J.W. Corbett, C. Deng and Z. Atzmon, J. Appl. Phys. 78, 3012 (1995)

    Article  CAS  Google Scholar 

  10. P.A. Stolk, J.L. Benton, D.J. Eaglesham, D.C. Jacobson, J.-Y. Cheng, J.M. Poate, S.M. Myers and T.E. Haynes, Appl. Phys. Lett. 68, 51 (1995)

    Article  Google Scholar 

  11. S.M. Myers, D.M. Follstaedt, D.M. Bishop and J.W. Medernach, in: Semiconductor Silicon, 7th International Symposium on Silicon Materials Science & Tech., edited by H.R. Huff, W. Bergholz and K. Sumino, (The Electrochemical Society, Pennington, NJ, 1994, p. 808–819

  12. J. Wong-Leung, E. Nygren and J.S. Williams, Appl. Phys. Lett. 67, 416 (1995)

    Article  CAS  Google Scholar 

  13. V. Raineri, A. Battaglia and E. Rimini, Nuc. Instr. and Meth. in Phys. Res. B96, 249 (1995)

    Article  Google Scholar 

  14. S.M. Myers, G.A. Petersen and C.H. Seager, J. Appl. Phys. 80, 3717 (1996)

    Article  CAS  Google Scholar 

  15. S.M. Myers and D. M. Follstaedt, J. Appl. Phys. 79, 1337 (1996)

    Article  CAS  Google Scholar 

  16. S.A. McHugo, M. Mizuno, F.G. Kirscht and E.R. Weber, Appl. Phys. Lett. 66, 2840 (1995)

    Article  CAS  Google Scholar 

  17. J.F. Ziegler, J.P. Biersack and U. Littmark, in: “The Stopping and Range of Ions in Solids”, (Pergamon, New York, 1985)

    Google Scholar 

  18. C.C. Griffioen, J.H. Evans, P.C. de Jong and A. Van Veen, Nucl. Instrum. Methods B27, 417 (1987)

    Article  CAS  Google Scholar 

  19. D.M. Follstaedt, S.M. Myers, G.A. Petersen and J.W. Medernach, J. Elec. Matls. 25, 151 (1996)

    Article  Google Scholar 

  20. E.R. Weber, Appl. Phys. A 30, 1 (1983)

    Article  Google Scholar 

  21. S.A. McHugo, E.R. Weber, S.M. Myers and G.A. Petersen, submitted to J. Appl. Phys., 1996

    Google Scholar 

  22. D.C. Miller and G.A. Rozgonyi, in: “Handbook on Semiconductors”, ed. S.P. Keller (North-Holland Publishing Company, 1980) p. 217–246.

  23. S.A. McHugo, E.R. Weber, S.M. Myers and G.A. Petersen, Appl. Phys. Lett. 69, 3060 (1996)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. McHugo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McHugo, S.A., Weber, E.R., Myers, S.M. et al. Competition Between Gettering by Implantation-Induced Cavities in Silicon and Internal Gettering Associated with SiO2 Precipitation. MRS Online Proceedings Library 439, 149–154 (1996). https://doi.org/10.1557/PROC-439-149

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-439-149

Navigation