Electronic Structure of a Nitrogen Vacancy in Cubic Gallium Nitride


A nitrogen vacancy in zinc-blende structure gallium nitride (c-GaN) is investigated by the plane-wave pseudopotential (PWPP) and tight binding-linear combination of muffin tin orbitals (TB-LMTO) methods using 32- and 64- atom supercells. The relaxation of the nearest Ga atom to the vacancy site is found to be inward by 0.069 a.u., with a relaxation energy of 0.04 eV/N-atom vacancy. The shell-projected, total and partial densities of states and the charge density maps are obtained to provide detailed information on energy and spatial localization of the N vacancy states.

This is a preview of subscription content, access via your institution.


  1. 1

    U. Scherz and M. Scheffler, in Semiconductors and Semimetals, vol. 38, E. R. Weber ed. (Academic Press, New York 1993), p. 1; L. Pavesi and P. Giannozzi, Phys. Rev. B 46, 4621 (1992).

    CAS  Article  Google Scholar 

  2. 2

    I. Akasaki, H. Amano, N. Koide, M. Kotaki, and K. Manabe, Physica B, 185, p.428 (1993).

    CAS  Article  Google Scholar 

  3. 3

    S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett., 64, p.1687 (1994).

    CAS  Article  Google Scholar 

  4. 4

    H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett., 15, p.327 (1969).

    Article  Google Scholar 

  5. 5

    M. Nagahara, S. Miyoshi, H. Yaguchi, K. Onabe, Y. Shiraki, and R. Ito, J. Crystal Growth, 145, p.1971 (1994).

    Article  Google Scholar 

  6. 6

    A. F. Wright and J. S. Nelson, Phys. Rev. B50, p. 2159 (1994).

  7. 7

    M. van Schilfgaarde, T. A. Paxton, O. Jepsen, and O. K. Anderson, TB-LMTO program-Version 44, Max Plank Institute for Solid State Physics, 1994.

    Article  Google Scholar 

  8. 8

    D. M. Ceperley and B. J. Aider, Phys. Rev. Lett.,45, p.556 (1980); J. P. Perdew and A. Zunger, Phys. Rev. B23, p.5048 (1981).

    Article  Google Scholar 

  9. 9

    K. Hedin and B. I. Lundqvist, J. Phys. C, 4, p.2064 (1971).

    Article  Google Scholar 

  10. 10

    T. Leim, T. D. Moustakas, R. J. Graham, Y. He, and S. Berkowitz, J. Appl. Phys., 71, p.4933 (1992).

    Google Scholar 

  11. 11

    A. F. Wright and J. S. Nelson, in Physics and Simulation of Optoelectronic Devices III, eds. M. Osinski, and W. W. Chow (The international Society for Optical Engineering, 2399, Bellingham, WA, 1995), p.498.

  12. 12

    V. A. Gubanov, A. F. Wright, J. S. Nelson, C. Y. Fong, and Barry M. Klein, (to be published).

    Google Scholar 

  13. 13

    J. Neugebauer and C. G. van de Walle, in Diamond, SiC and Nitride Wide-Bandgap Semiconductor, eds. C. H. Carter Jr., G. Gildenblat, S. Nakamura, J. Nemanich, (MRS Symposia Proceedings, 339, Pittsburgh, Pennsylvania, 1995), p.687.

    CAS  Article  Google Scholar 

  14. 14

    P. Perlin, T. Suski, H. Teisseyre, M. Leszczynski, I. Grzegory, J. Jun, S. Porowski, P. Boguslawski, J. Berholc, J. C. Chervin, A. Polian, and T. D. Moustakas, Phys. Rev. Lett., 75, 296(1995).

  15. 15

    C. Wetzel, W. Walukiewicz, E. E. Haller, J. W. Ager, A. Chen, S. Fisher, P. Y. Yu, R. Jeanloz, I. Grzegory, S. Porowski, T. Suski, H, Amano, and I. Akasaki, proc. 18th Int. Conf. on Defects in Semiconductors, July 24–28, Sendai, japan, 1995.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V.A. Gubanov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gubanov, V., Wright, A., Nelson, J. et al. Electronic Structure of a Nitrogen Vacancy in Cubic Gallium Nitride. MRS Online Proceedings Library 395, 509–514 (1995). https://doi.org/10.1557/PROC-395-509

Download citation