Skip to main content

Monte Carlo Simulation of Dislocation-Nucleated Etching of Silicon {111} Surfaces

Abstract

We investigate equilibrium properties and thermal etching of the {111} surfaces of silicon, both with and without perpendicular intersecting dislocations, using Monte Carlo computer simulation. A modified solid-on-solid (SOS) approach is employed which realizes the correct diamond-cubic (DC) crystal structure. Nearest-neighbor interactions are incorporated to model the bonding, while the effects of a dislocation are incorporated by the addition of an energy field modeled as a core region and an elastic strained region. Dislocations are seen to nucleate the etching process and result in the formation of etch pits. Etch rates and etch-pit morphologies are investigated as a function of the chemical potential driving force for etching, the temperature, and the energy parameters used to model the dislocation.

This is a preview of subscription content, access via your institution.

References

  1. J. N. Sherwood, Faraday Discuss. 95, 1 (1993).

    Article  Google Scholar 

  2. R. B. Heimann. In, Silicon Chemical Etching. J. Grabmaier, editor. (Springer-Verlag, Berlin, 1982).

    Google Scholar 

  3. National Research Council, Plasma Processing of Materials: Scientific Opportunities and Technological Challenges (National Academy Press, Washington, 1991).

    Google Scholar 

  4. A. V. Pakhomov and E. M. Nadgorny, Bull. APS. 39(1), 930 (1994).

    Google Scholar 

  5. Y. L. Orlov, The Mineralogy of the Diamond (Wiley, New York, 1973) pp. 82–87.

    Google Scholar 

  6. P. C. Weakliem, C. J. Wu, and E. A. Carter, Phys. Rev. Lett. 69, 200 (1992); L. E. Carter and E. A. Carter, Surf. Sci. 323, 39 (1995).

    Article  CAS  Google Scholar 

  7. For reviews, see: H. Müller-Krumbhaar, in Monte Carlo Methods in Statistical Physics, ed. K. Binder (Springer-Verlag, Berlin, 1986) p. 261; J. D. Weeks and G. H. Gilmer, Advances in Chemical Physics, 40, 157 (1979); J. P. van der Eerden and P. Bennema, Prog. Crystal Growth Charact. 1, 219 (1978).

    Chapter  Google Scholar 

  8. G. H. Gilmer and P. Bennema, J. Crystal Growth 13/14, 148 (1972).

    Article  Google Scholar 

  9. G. H. Gilmer, J. Crystal Growth 35, 15 (1976).

    Article  Google Scholar 

  10. R. H. Swendsen, P. J. Kortman, D. P. Landau and H. Müller-Krumbhaar, J. Crystal Growth 35, 73 (1976).

    Article  CAS  Google Scholar 

  11. C.S. Kohli and M. B. Ives, J. Crystal Growth 16, 123 (1972).

    Article  CAS  Google Scholar 

  12. V. K. W. Cheng and B. A. W. Coller, J. Crystal Growth 84, 436 (1987).

    Article  CAS  Google Scholar 

  13. G. H. Gilmer, J. Crystal Growth 42, 3 (1977).

    Article  CAS  Google Scholar 

  14. G.-Z. Liu, J. P. van der Eerden, and P. Bennema, J. Crystal Growth 58, 152 (1982).

    Article  CAS  Google Scholar 

  15. B. van der Hoek, J. P. van der Eerden, and P. Bennema, J. Crystal Growth 56, 621 (1981).

    Article  Google Scholar 

  16. J. A. Jaszczak, W. F. Saam and B. Yang, Phys. Rev. B 39, 9289 (1989).

    Article  CAS  Google Scholar 

  17. J. A. Jaszczak, W. F. Saam, and B. Yang, Phys. Rev. B 41, 6864 (1990).

    Article  CAS  Google Scholar 

  18. A. S. Nandedkar and J. Narayan, Phil. Mag. A. 61, 873 (1990).

    Article  CAS  Google Scholar 

  19. M. Wortis, in Chemistry and Physics of Solid Surfaces Vol. VII. R. Vanselow, editor. (Springer-Verlag, Berlin, 1988) p. 367.

    Google Scholar 

  20. W. J. P. Van Enckevort and J. P. Van der Eerden, J. Crystal Growth, 47, 501 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Woodraska, D.L., Lacosse, J. & Jaszczak, J.A. Monte Carlo Simulation of Dislocation-Nucleated Etching of Silicon {111} Surfaces. MRS Online Proceedings Library 389, 209–214 (1995). https://doi.org/10.1557/PROC-389-209

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-389-209