Abstract
We investigate equilibrium properties and thermal etching of the {111} surfaces of silicon, both with and without perpendicular intersecting dislocations, using Monte Carlo computer simulation. A modified solid-on-solid (SOS) approach is employed which realizes the correct diamond-cubic (DC) crystal structure. Nearest-neighbor interactions are incorporated to model the bonding, while the effects of a dislocation are incorporated by the addition of an energy field modeled as a core region and an elastic strained region. Dislocations are seen to nucleate the etching process and result in the formation of etch pits. Etch rates and etch-pit morphologies are investigated as a function of the chemical potential driving force for etching, the temperature, and the energy parameters used to model the dislocation.
This is a preview of subscription content, access via your institution.
References
J. N. Sherwood, Faraday Discuss. 95, 1 (1993).
R. B. Heimann. In, Silicon Chemical Etching. J. Grabmaier, editor. (Springer-Verlag, Berlin, 1982).
National Research Council, Plasma Processing of Materials: Scientific Opportunities and Technological Challenges (National Academy Press, Washington, 1991).
A. V. Pakhomov and E. M. Nadgorny, Bull. APS. 39(1), 930 (1994).
Y. L. Orlov, The Mineralogy of the Diamond (Wiley, New York, 1973) pp. 82–87.
P. C. Weakliem, C. J. Wu, and E. A. Carter, Phys. Rev. Lett. 69, 200 (1992); L. E. Carter and E. A. Carter, Surf. Sci. 323, 39 (1995).
For reviews, see: H. Müller-Krumbhaar, in Monte Carlo Methods in Statistical Physics, ed. K. Binder (Springer-Verlag, Berlin, 1986) p. 261; J. D. Weeks and G. H. Gilmer, Advances in Chemical Physics, 40, 157 (1979); J. P. van der Eerden and P. Bennema, Prog. Crystal Growth Charact. 1, 219 (1978).
G. H. Gilmer and P. Bennema, J. Crystal Growth 13/14, 148 (1972).
G. H. Gilmer, J. Crystal Growth 35, 15 (1976).
R. H. Swendsen, P. J. Kortman, D. P. Landau and H. Müller-Krumbhaar, J. Crystal Growth 35, 73 (1976).
C.S. Kohli and M. B. Ives, J. Crystal Growth 16, 123 (1972).
V. K. W. Cheng and B. A. W. Coller, J. Crystal Growth 84, 436 (1987).
G. H. Gilmer, J. Crystal Growth 42, 3 (1977).
G.-Z. Liu, J. P. van der Eerden, and P. Bennema, J. Crystal Growth 58, 152 (1982).
B. van der Hoek, J. P. van der Eerden, and P. Bennema, J. Crystal Growth 56, 621 (1981).
J. A. Jaszczak, W. F. Saam and B. Yang, Phys. Rev. B 39, 9289 (1989).
J. A. Jaszczak, W. F. Saam, and B. Yang, Phys. Rev. B 41, 6864 (1990).
A. S. Nandedkar and J. Narayan, Phil. Mag. A. 61, 873 (1990).
M. Wortis, in Chemistry and Physics of Solid Surfaces Vol. VII. R. Vanselow, editor. (Springer-Verlag, Berlin, 1988) p. 367.
W. J. P. Van Enckevort and J. P. Van der Eerden, J. Crystal Growth, 47, 501 (1979).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Woodraska, D.L., Lacosse, J. & Jaszczak, J.A. Monte Carlo Simulation of Dislocation-Nucleated Etching of Silicon {111} Surfaces. MRS Online Proceedings Library 389, 209–214 (1995). https://doi.org/10.1557/PROC-389-209
Published:
Issue Date:
DOI: https://doi.org/10.1557/PROC-389-209