Skip to main content
Log in

Photoluminescence of a Single-Crystal Silicon Quantum Well

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Single crystal-silicon quantum well layers with SiO2 barriers were grown from silicon-on-insulator substrates. Photoluminescence in the red and near-infrared was observed for average layer thickness < 8 nm, with peak signal for 2-nm thickness. The luminescence spectrum was essentially independent of well width for SiO2 barriers, but the photoluminescence intensity decreased sharply after annealing in Ar. These results suggest the importance of radiation from surface states. In contrast to oxide-passivated silicon nanocrystals and to porous silicon, the room-temperature photoluminescence quantum efficiency is low (10-4-10-5), probably due to variations in layer thickness and to diffusion of photoexcited carriers to fast nonradiative recombination centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. T. Canham, Appl. Phys. Lett.57, 1046 (1990).

    Article  CAS  Google Scholar 

  2. F. Koch, V. Petrova-Koch, T. Muschik, A. Nikolov, and V. Gavrilenko, in Microcrystalline Semiconductors—Materials Science & Devices, edited by P. M. Fauchet, C. C. Tsai, L. T. Canham, I. Shimizu, and Y. Aoyagi (Mater. Res. Soc. Proc. 283, Pittsburgh, PA, 1993), p.197.

  3. F. Koch, V. Petrova-Koch, and T. Muschik, J. Lumin.57, 271 (1993).

    Article  CAS  Google Scholar 

  4. C. Delerue, G. Allan, and M. Lannoo, Phys. Rev. B48, 11 (1993).

    Article  Google Scholar 

  5. SIMOX (Separation by IMplantation of OXygen) is prepared from a standard silicon substrate by a high-density, high-energy oxygen implant (1018 cm-2, 190 keV, >600° C) followed by a high-temperature anneal (1320° C, 6 hrs, N2). This yields a slightly silicon-rich a-SiO2, layer between the crystalline substrate and a crystal silicon upper layer of the same orientation. See e.g. M. K. El-Ghor et al., Appl. Phys. Lett. 57, 156 (1990) and

    Article  CAS  Google Scholar 

  6. A. Wittkower et al., Nucl. Instr. and Meth. B55, 842 (1991).

    Article  CAS  Google Scholar 

  7. The triple-implant wafer also had a lower density of threading dislocations in the silicon layer (<104 cm-2 vs. <5×l05 cm-2).

  8. E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982), pp.781–2.

    Google Scholar 

  9. G. E. Jellison Jr. and F. A. Modine, J. Appl. Phys. 53, 3745 (1982).

    Article  CAS  Google Scholar 

  10. Handbook of Optical Constants of Solids II, edited by E. D. Palik (Academic Press, Boston, 1991), pp.759–760

    Google Scholar 

  11. W. L. Wilson, P. F. Szajowski, and L. E. Brus, Science 262, 1242 (1993).

    Article  CAS  Google Scholar 

  12. Y. Kanemitsu, Phys. Rev. B48, 12 (1993).

    Article  Google Scholar 

  13. X. Chen, B. Henderson, and K. P. O’Donnell, Appl. Phys. Lett.60, 2672 (1992).

    Article  CAS  Google Scholar 

  14. J. C. Vial, A. Bsiesy, F. Gaspard, R. Hérino, M. Ligeon, F. Muller, and R. Romestain, Phys. Rev. B45, 14171 (1992).

    Article  CAS  Google Scholar 

  15. A. Wittkower, private communication.

  16. N. H. Nickel, N. M. Johnson, and W. B. Jackson, Appl. Phys. Lett.62, 3285 (1993).

    Article  CAS  Google Scholar 

  17. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981) p.851.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saeta, P.N., Gallagher, A.C. Photoluminescence of a Single-Crystal Silicon Quantum Well. MRS Online Proceedings Library 358, 981 (1994). https://doi.org/10.1557/PROC-358-981

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-358-981

Navigation