Skip to main content
Log in

Laser Doping and Crystallization of Amorphous Silicon Thin Films

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Fast-pulse laser crystallization of amorphous silicon thin films on non-crystalline substrates provides a low-temperature process for generating polycrystalline silicon. This process can be augmented by including laser doping to reduce the number of process steps in the fabrication of thin-film polysilicon devices. We have studied the simultaneous laser crystallization and laser doping process, starting with amorphous silicon on fused silica substrates and using the gas immersion technique for the doping. n-type and p-type doping employed PF5 and BF3 gases, respectively. Films were characterized both structurally and electrically. The grain size increases with increasing laser energy density as the film becomes fully melted and reaches a peak value, similar to laser crystallization without doping. The dopant concentration increases with the number of laser shots and, with 100 shots, achieves a high dose with a low sheet resistance below 1000 ohms/square, appropriate for devices. The dopant profile extends to a depth comparable to the melt depth, beyond which it falls off to the background level. Therefore, the doping depth and concentration can be controlled with the laser parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Samashima and S. Usui, Mat. Res. Soc. Symp. Proc.71, 435 (1986).

    Article  Google Scholar 

  2. S. E. Ready, J. B. Boyce, R. Z. Bachrach, R. I. Johnson, K. Winer, G. B. Anderson, and C. C. Tsai, Mat. Res. Soc. Proc.149, 345 (1989).

    Article  CAS  Google Scholar 

  3. K. Sera, F. Okumura, H. Uchida, S. Itoh, S. Kaneko, and K. Hotta, IEEE Trans. Electron Devices 36, 2868 (1989).

    Article  CAS  Google Scholar 

  4. R. Z. Bachrach, K. Winer, J. B. Boyce, S. E. Ready, R. I. Johnson, and G. B. Anderson, J. Electron. Mat.19, 241 (1990).

    Article  CAS  Google Scholar 

  5. K. Shimizu, O. Sugiura, and M. Matsumura, Jpn. J. Appl. Phys., 29, L1775 (1990).

    Article  CAS  Google Scholar 

  6. R. I. Johnson, G. B. Anderson, J. B. Boyce, D. K. Fork, P. Mei, S. E. Ready, and S. Chen, Mat. Res. Soc. Proc.297, 533 (1993).

    Article  CAS  Google Scholar 

  7. J. B. Boyce, G. B. Anderson, D. K. Fork, R. I. Johnson, P. Mei, S. E. Ready, Mat. Res. Soc. Proc.321, 671 (1994).

    Article  CAS  Google Scholar 

  8. G. B. Anderson, J. B. Boyce, D. K. Fork, R. I. Johnson, P. Mei, and S. E. Ready, Mat. Res. Soc. Proc., 343, 709 (1994).

    Article  CAS  Google Scholar 

  9. S. D. Brotherton, D. J. McCulloch, J. B. Clegg, and J. P. Growers, IEEE Trans. Electron Devices 40, 407 (1993).

    Article  Google Scholar 

  10. P. Mei, J. B. Boyce, M. Hack, R. A. Lujan, R. I. Johnson, G. B. Anderson, S. E. Ready, D. K. Fork, and D. L. Smith, Mat. Res. Soc. Proc.297, 151 (1993).

    Article  CAS  Google Scholar 

  11. P. Mei, J. B. Boyce, M. Hack, R. A. Lujan, R. I. Johnson, G. B. Anderson, D. K. Fork, and S. E. Ready, J. Appl. Phys.76 (5), 3194 (1994).

    Article  CAS  Google Scholar 

  12. P. G. Carey and T. W. Sigmon, Appl. Surface Sci., 43 325 (1989).

    Article  CAS  Google Scholar 

  13. K. H. Weiner, P. G. Carey, A. M. McCarthy, and T. W. Sigmon, Microelectronic Eng, 20 107 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyce, J.B., Anderson, G.B., Carey, P.G. et al. Laser Doping and Crystallization of Amorphous Silicon Thin Films. MRS Online Proceedings Library 358, 909 (1994). https://doi.org/10.1557/PROC-358-909

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-358-909

Navigation