Skip to main content
Log in

Spin Resonance Studies on free Electrons and Defects in Microcrystalline Silicon

  • Published:
MRS Online Proceedings Library Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The effect of micro-doping, defect creation, and non-steady state occupation through optical transitions on the electron spin resonance signals found in undoped and weakly doped microcrystalline silicon with a high degree of crystallinity is investigated. The experimental results are in agreement with the assignment of the resonance at g=1.9983 to conduction electrons in the crystalline grains and the resonanccs around g=2.0052 to dangling bonds in the remaining amorphous phase and at the grain boundaries. The simultaneous presence of both resonances can result from a large conduction band offset between crystalline grains and grain boundaries or the amorphous phase. The presence of conduction electron spin resonance in compensated and even p-type material points also to potential fluctuations. Free electrons in interconnected crystalline grains are in agreement with the weakly activated transport found in μc-Si:H at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Finger, C. Malten, P. Hapke, R. Carius, R. Flückiger and H. Wagner, Phil. Mag. Lett. 70 (1994) 247

    Article  CAS  Google Scholar 

  2. F. Finger, P. Hapke, M. Luysberg, R. Carius, H. Wagner and M. Scheib, Appl. Physics Lett. 65 (1994) 2588

    Article  CAS  Google Scholar 

  3. P. Hapke, F. Finger, M. Luysberg, R. Carius and H. Wagner, this conference

  4. R. Fluckiger, J. Meier, H. Keppner, M. Goetz and A. Shah, Proc. 23rd IEEE Photovoltaic Specialist Conference, Louisville, Kentucky (1993) 839

    Google Scholar 

  5. G. Willeke, in Physics and applications of amorphous and microcrystalline semiconductor devices, edited by J. Kanicki, Artech House (1992) 55

  6. P. S. Caplan, E. H. Pointdexter, B. E. Deal and R. R. Razouk, J. Appl. Phys. 50 (1979) 5847

    Article  CAS  Google Scholar 

  7. E. G. Sieverts, Phys. Stat. Sol. B 120 (1983) 11

    Article  CAS  Google Scholar 

  8. M. Suezawa, K. Sumino and M. Iwaizumi, J. Appl. Phys. 54 (1983) 6594

    Article  CAS  Google Scholar 

  9. D. Ballutaud, M. Aucouturier and F. Babonneau, Appl. Phys. Lett. 49 (1986) 1620

    Article  CAS  Google Scholar 

  10. A. M. Portis, A. F. Kip, C. Kittel, and W. H. Brattain, Phys. Rev. 90 (1953) 988

    Article  CAS  Google Scholar 

  11. S. Hasegawa, T. Kasajima, and T. Shimizu, J. Appl. Phys. 50 (1979) 7256

    Article  CAS  Google Scholar 

  12. S. Hasegawa, S. Narikawa, and Y. Kurata, Phil. Mag. B 48 (1983) 431

    Article  CAS  Google Scholar 

  13. von H. J. Bardleben, C. Ortega, A. Grosman, V. Morazzani, J. Siejka and D. Stievenard, J. Luminescence 57 (1993) 301

    Article  Google Scholar 

  14. M. Tzolov and P. Hapke, unpublished

  15. H. Overhof and P. Thomas, Electronic Transport in Hydrogenated Amorphous Semiconductors, Springer Tracts In Modern Physics Vol. 114, Berlin (1989)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malten, C., Finger, F., Hapke, P. et al. Spin Resonance Studies on free Electrons and Defects in Microcrystalline Silicon. MRS Online Proceedings Library 358, 757 (1994). https://doi.org/10.1557/PROC-358-757

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-358-757

Navigation