Skip to main content
Log in

The Relationship between InGaAs Channel Layer Thickness and Device Performance in High Electron Mobility Transistors

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The performance of InGaAs/GaAs pseudomorphic high electron mobility transistors is anticipated to improve with increased channel thickness due to reduced effects of quantum confinement. However, greater channel thicknesses increase the probability of forming misfit dislocations which have been reported to impair device properties. We characterized the composition and thickness of the active layer in Al0.25Ga0.75As / In0.21Ga0.79As structures with different channel thicknesses (75 Å - 300 Å) to within ± 0.005 and ± 8 Å using high resolution x-ray techniques. We determined, using Hall and rf measurements, that the device properties of these structures improved with increasing thickness up to about 185-205 Å; degraded properties were observed for thicker channel layers. Cathodoluminescence results indicate that the mosaic spread observed in x-ray triple axis rocking curves of these device structures is due to the presence of misfit dislocations. Thus, even though misfit dislocations are present, the device structure performs best with a channel thickness of ∼185 Å. These results demonstrate that one can fabricate functional devices in excess of critical thickness considerations, and that these x-ray techniques provide an effective means to evaluate structural properties prior to device processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.C. Streit, K.L. Tan, R.M. Dia, J.K. Liu, A.C. Han and J.R. Velebir, IEEE Elec. Dev. Lett. 12, 149 (1991).

    Article  CAS  Google Scholar 

  2. K.L. Tan, R.M. Dia, D.C. Streit, L.K. Shaw, A.C. Han, M.D. Sholley, P.H. Liu, T.Q. Trinh, T. Lin, H.C. Yen, IEEE Elec. Dev. Lett. 12, 23 (1991).

    Article  CAS  Google Scholar 

  3. L.D. Nguyen, D.C. Radulescu, M.C. Foisy, P.J. Tasker and L.F. Eastman, IEEE Trans. Elec. Dev. 36, 833 (1989).

    Article  Google Scholar 

  4. A. Fischer-Colbrie J.N. Miller, S.S. Laderman, S.J. Rosner and R. Hull, J. Vac. Sci. Technol., B 6 620 (1988).

    Article  Google Scholar 

  5. N. Moll, M.R. Hueschen and A. Fischer-Colbrie, IEEE Trans. Elec. Dev. 35, 878 (1988).

    Article  Google Scholar 

  6. J.W. Matthews and A.E. Blakeslee, J. Crys. Growth 27, 118 (1974).

    CAS  Google Scholar 

  7. T. Schweizer, K. Kohler, W. Rothemund and P. Ganser, Appl. Phys. Lett. 59, 2736 (1991).

    Article  CAS  Google Scholar 

  8. Bede Scientific Instruments Ltd, Lindsey Park, Bowburn, Durham DH6 5PF, U. K.

  9. RADS Rocking Curve Analysis by Dynamical Simulation, Bede Scientific Instruments Ltd.. UK (1992).

  10. M. Meshkinpour, M.S. Goorsky, K. Matney, D.C. Streit and T. Block, J. Appl. Phys., submitted.

  11. G.S. Green, B.K. Tanner, S.J. Barnett, M.T. Emery, A.D. Pitt, C.R. Whitehouse and G.F. Clark, Philos. Mag. Lett. 62, 131 (1990).

    Article  CAS  Google Scholar 

  12. D.H. Rich, K. Rammohan, Y. Tang, H.T. Lin, J. Maserjian, F.J. Grunthaner, A. Larsson and S.I. Borenstain, Appl. Phys. Lett. 64, 1 (1994).

    Article  Google Scholar 

  13. P.F. Fewster and C.J. Curling, J. Appl. Phys. 62, 4154 (1987).

    Article  CAS  Google Scholar 

  14. C.R. Wie, J. Appl. Phys. 66, 985 (1989).

    Article  CAS  Google Scholar 

  15. S.R. Stiffler, J.H. Comfort, C.L. Stanis, D.L. Harame, E. de Fresart and B.S. Meyerson, J. Appl. Phys. 70, 1416 (1991).

    Article  CAS  Google Scholar 

  16. D.C. Streit et al., to be submitted.

  17. B.K. Tanner and D.K. Bowen, J. Crys. Growth 126, 1 (1993).

    Article  CAS  Google Scholar 

  18. G.P. Watson, D.G. Ast, T.J. Anderson, B. Pathangey and Y. Hayakawa, J. Appl. Phys. 71, 3399 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meshkinpour, M., Goorsky, M.S., Streit, D.C. et al. The Relationship between InGaAs Channel Layer Thickness and Device Performance in High Electron Mobility Transistors. MRS Online Proceedings Library 340, 327–332 (1994). https://doi.org/10.1557/PROC-340-327

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-340-327

Navigation