Skip to main content
Log in

Characterization and Control of Surface Morphology and Defect Density for MBE GaAs Surfaces in the Production MBE Environment

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

In the production MBE environment it is important to maintain low densities of oval defects and particle induced defects in epitaxial films that are used for the fabrication ofGaAs ICs. Most often, the grown layers are characterized on a sample basis by use of an optical microscope. The disadvantages of this technique are the time and labor involved.The data obtained is incomplete, dependent on training, and subjective. A preferred method would be to develop an inspection method that characterizes the surface morphology ofall MBE grown GaAs wafers and the resulting defect density. The use of a laser wafer surface scanning system has allowed us to reproducably inspect 100% of wafers. Rapid diagnosis of epitaxial problems has resulted in an improved understanding of how to routinely produce high quality epitaxial films for GaAs IC production. This work will highlight the production benefits derived from employing 100% inspection of MBE grown GaAs wafers and provide 2D maps. The relationship between gallium source operation and defect sizes will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Buyanov, E.P. Laurs, G.P. Peka, E.M. Semashko, and V.N. Tkachenko, Fizika Tverdogo Tela 33 (9), 2744–2748 (1991).

    CAS  Google Scholar 

  2. Masanori Shinohara, Tomonori Ito, Kazumi Wada, and Yoshihiro Imamura, Jpn. J. Appl. Phys. 23 (6), L371–L373 (1984).

    Article  Google Scholar 

  3. H. Kawada, S. Shirayone and K. Takahashi, J. Crystal Growth 128, 550–556 (1993).

    Article  CAS  Google Scholar 

  4. Shigenori Takagishi, Hideki Yao, and Hirotaro Mori, J. Crystal Growth 129, 443–448 (1993).

    Article  CAS  Google Scholar 

  5. Kazuo Nanbu, Junji Saito, Tomonori Ishikawa, Kazuo Kondo, and Akihiro Shibatomi, J. Electrochem. Soc. 133 (3), 601–604 (1986).

    Article  CAS  Google Scholar 

  6. S.M. Bedair, T.P. Humphreys, N.A. El-Masry, Y. Lo, N. Hamaguchi, C.D. Lamp, A.A. Tuttle, D.L. Dreifus, and P. Russell, Appl. Phys. Lett. 49 (15), 942–944 (1986).

    Article  CAS  Google Scholar 

  7. S. Matteson and H.D. Shih, Appl Phys. Lett. 48 (1), 47–49 (1986).

    Article  CAS  Google Scholar 

  8. R. Z. Bachrach and B.S. Krusor, J. Vac. Sci. Technol. 18 (3), 756–764 (1981).

    Article  CAS  Google Scholar 

  9. Y.H. Wang, W.C. Liu, S.A. Liao, K.Y. Cheng, and C.Y. Chang, Jpn. J. Appl. Phys. 24 (5), 628–629 (1985).

    Article  CAS  Google Scholar 

  10. K. Fujiwara, Y. Nishikawa, Y. Tokuda, and T. Nakayama, Appl. Phys. Lett. 48 (11), 701–703 (1986).

    Article  CAS  Google Scholar 

  11. Nozomu Watanabe, Toshiaki Fukunaga, Keisuke L. I. Kobayashi and Hisao Nakashima, Jpn. J. Appl. Phys. 24 (7), L498–L500 (1985).

    Article  Google Scholar 

  12. Shing-Lin Weng, J. Vac. Sci. Technol. B 5 (3), 725–729 (1987).

    Article  CAS  Google Scholar 

  13. Shang-Lin Weng, C. Webb, Y.G. Chai, and S.G. Bandy, Appl. Phys. Lett. 47 (4), 391–393 (1985).

    Article  CAS  Google Scholar 

  14. J H. Fronius, A. Fisher and K. Ploog, J. Crystal Growth 81, 169–174 (1987).

    Article  CAS  Google Scholar 

  15. H. Fronius, A. Fischer and K. Ploog, Jpn. J. Appl. Phys. 25 (2), L137–L138 (1986).

    Article  CAS  Google Scholar 

  16. Naresh Chand and S.N.G. Chu, J. Crystal Growth 104, 485–497 (1990).

    Article  CAS  Google Scholar 

  17. C.E.C. Wood, L. Rathbun, H. Ohno, and D. DeSimone, J. Crystal Growth 51, 299–303 (1981).

    Article  CAS  Google Scholar 

  18. D.G. Schlom, W.S. Lee, T. Ma, and J.S. Harris Jr, J. Vac. Sci. Technol. B 7 (2), 296–298 (1989).

    Article  CAS  Google Scholar 

  19. J. N. Miller, J. Vac. Sci. Technol. B 10 (2), 803–806 (1992).

    Article  Google Scholar 

  20. C.T. Lee and Y.C. Chou, J. Crystal Growth 91, 169–172 (1988).

    Article  CAS  Google Scholar 

  21. Masanori Shinohara and Tomonori Ito, J. Appl.Phys. 65 (11), 4260–4267 (1989).

    Article  CAS  Google Scholar 

  22. Young G. Chai and Robert Chow, Appl. Phys. Lett. 38 (10), 796–798 (1981).

    Article  CAS  Google Scholar 

  23. Shang-Lin Weng, Appl. Phys. Lett. 49 (6), 345–347 (1986).

    Article  CAS  Google Scholar 

  24. S.K. Mehta, R. Muralidharan, G.D. Sharda and R.K. Jain, Semicond. Sci. Technol. 7, 635–640 (1992).

    Article  CAS  Google Scholar 

  25. P.S. Kop’ev, S.V. Ivanov, A. Yu. Yegorov and D. Yu. Uglov, J. Crystal Growth 96, 533–540 (1989).

    Article  Google Scholar 

  26. R. F. Kopf and A.P. Kinsella, C.W. Ebert, J. Vac. Sci. Technol. B 9 (1), 132–135 (1991).

    Article  CAS  Google Scholar 

  27. J.S. Blakemore, J. Appl. Phys. 53 (10), R123–R181 (1982).

    Article  CAS  Google Scholar 

  28. P.O. Hahn and M. Kerstan. Proc. S.P.I.E. 1009, 172–181 (1988).

    Google Scholar 

  29. P.O. Hahn, M. Grundner, A. Schnegg, and H. Jacob, Applied Surface Science 39, 436–456 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patterson, G.A., Chang, J.S.C. Characterization and Control of Surface Morphology and Defect Density for MBE GaAs Surfaces in the Production MBE Environment. MRS Online Proceedings Library 340, 23–28 (1994). https://doi.org/10.1557/PROC-340-23

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-340-23

Navigation