Skip to main content
Log in

New Technology and Developments in Compound Semiconductor Vertical RDR-MOCVD Growth Systems

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Compound semiconductors are at the heart of todays advanced digital and optoelectronic devices. As device production levels increase, so too does the need for high throughput deposition systems. The vertical rotating disk reactor (RDR) has been scaled to dimensions allowing metal organic chemical vapor deposition (MOCVD) on multiple substrates located on a 300 mm diameter platter. This symetric large area reactor affords easy access over a wide range of angles for optical monitoring and control of the growth process. The RDR can be numerically modeled in a straightforward manner, and we have derived scaling rules allowing the prediction of optimum process conditions for larger reactor sizes. The material results give excellent agreement with the modeling, demonstrating GaAs/AlAs structures with <±0.9% thickness uniformities on up to 17-50mm or 4-100mm GaAs substrates. Process issues related to reactor scaling are reviewed. With high reactant efficiencies and short cycle times between growths, through the use of a vacuum loadlock, the costs per wafer are found to be dramatically less than in alternative process reactors. The high reactant utilization, in combination with a dedicated and highly efficient exhaust scrubbing system, minimizes the systems environmental impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Biber, et al, J. of Crystal Growth, 123 (1992) p. 545–554

    Article  Google Scholar 

  2. W.G. Breiland and G.H. Evans, J. Electrochem. Soc. 138 (6) (1991) p. 1806–1816.

    Article  Google Scholar 

  3. G.S. Tompa, et. al, J. Crystal Growth, 93 (1988) p. 220–227.

    Article  CAS  Google Scholar 

  4. R.W. Davis, E.F. Moore, and M.R. Zachariah, J. of Crystal Growth, 132 (1993) 513–522.

    Article  CAS  Google Scholar 

  5. D.I. Fotiadis, S. Kieda and K.F. Jensen, J. Crystal Growth, 102 (1990) p. 441–470.

    Article  CAS  Google Scholar 

  6. A.I. Gurary, G.S. Tompa, A.G. Thompson, R.A. Stall, P. Zawadzki, and N.E. Schumaker, Presented at ICOMVPE-VII, Japan, 5/31/94 Abstract P3-1; A.I. Gurary, G.S. Tompa, K. Moy and P. Zawadzki,.MRS Spring Meeting, 1994, paper E1,6.

  7. Y.A. Wu et at, 51st IEEE Device Res. Conf, paper IIIB-3, 1993.

    Google Scholar 

  8. R.P. Schneider and J.A. Lott, Electron. Lett. 20, 830 (1993.

    Google Scholar 

  9. P. Yeh, “Optical Waves in Layered Media”, Wiley, New York, 1988.

    Google Scholar 

  10. S. Adachi, “Properties of GaAs”, Inspec (EMIS Datareview #2), p513, 1990.

    Google Scholar 

  11. G.S. Tompa, P.A. Zawadzki, K. Moy, M. McKee, A. Thompson, R.A. Stall, A. Gurary, N.E. Schumaker, P. Esherick, W.G. Breiland, and G.H. Evans Proceedings of U.S. Conference on GaAs Manufacturing Technology, in press, 1994.

    Google Scholar 

  12. A.G. Thompson, G.S. Tompa, P.A. Zawadzki, M. McKee, C. Beckham, A. Powers, A. Gurary, K. Moy, N.E. Schumaker, MRS Spring Meeting 1994, paper 15.1, and references contained therein.

    Google Scholar 

  13. J.M. Dallasasse et al, J. Appl. Phys. 66 (2) 1989; 482–487

    Article  Google Scholar 

  14. N. Holonyak Jr., et al, App. Phys. Lett., 54 (11) 1989 p. 1022–1024.

    Article  CAS  Google Scholar 

  15. G.S. Tompa et al, J. Crystal Growth 93 (1988) 228.

    Article  Google Scholar 

  16. P.L. Anderson et al, J. of Crystal Growth, in press 1994

    Google Scholar 

  17. G.S. Tompa et. al, Appl. Phys. Lett. 55 (62) (1989(

    Google Scholar 

  18. G.S. Tompa et al, J. Crystal Growth 107 (1991) p. 1198–202.

    Article  Google Scholar 

  19. K.H. Yooung, et al, Appl. Phys. Lett. 61 (5) 1992

    Google Scholar 

  20. W.J. DeSisto et. al, Appl. Phys. Lett. 60 (23) 1992

    Google Scholar 

  21. P.A. Zawadzki, J. Elec. Mat. V19 N4 (1990) p 357–362.

    Google Scholar 

  22. R.A. Stall et al, Mat. Res. Soc. Proc. ULSI-VII 1992 P.115–121

    Google Scholar 

  23. G.S. Tompa et al, Mat. Res. Soc. Symp. Proc. V 282 (1993) p.323–328.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKee, M., Tompa, G.S., Zawadzki, P.A. et al. New Technology and Developments in Compound Semiconductor Vertical RDR-MOCVD Growth Systems. MRS Online Proceedings Library 340, 141–146 (1994). https://doi.org/10.1557/PROC-340-141

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-340-141

Navigation