Skip to main content
Log in

The Anomalous Behavior of Silicon During Nanoindentation

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Two separate phenomena occur during the low-load indentation of silicon which make its behavior distinctly different from that of most materials. First, silicon is one of only a very few materials whose hardness exceeds the pressure needed to transform it to a denser crystalline (or amorphous) form, and because of this, a reversible, pressure-induced phase transformation occurs during indentation. The transformation enhances the electrical conductivity of the material and creates a region around the indenter which flows like a soft metal. Second, silicon cracks when indented by a Berkovich or Vickers indenter at loads of less than 100 mN, i.e., loads typically used in nanoindentation experiments. These two phenomena, which account for a number of unusual features in the indentation load-displacement behavior, are documented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.M. Pharr, W.C. Oliver, and D.R. Clarke, Scripta Metall. 23, 1949 (1989).

    Article  CAS  Google Scholar 

  2. G.M. Pharr, W.C. Oliver, and D.R. Clarke, J. Elec. Mater. 19, 881 (1990).

    Article  CAS  Google Scholar 

  3. J.Z. Hu, L.D. Merkle, C.S. Menoni, and I.L. Spain, Phys. Rev. B34, 4679 (1986).

    Article  CAS  Google Scholar 

  4. H. Minomura and H.G. Drickamer, J. Phys. Chem Solids 23, 451 (1962).

    Article  CAS  Google Scholar 

  5. H. Olijnyk, S.K. Sikka, and W.B. Holzapfel, Phys. Let.103A, 137 (1984).

    Article  CAS  Google Scholar 

  6. S.C. Duelos, Y.K. Vohra, and A.L. Ruoff, Phys. Rev. Let. 58, 775 (1987).

    Article  Google Scholar 

  7. R.H. Wentorf and J.S. Kasper, Science 139, 338 (1963).

    Article  CAS  Google Scholar 

  8. J.C. Jamieson, Science 139, 764 (1963).

    Article  Google Scholar 

  9. J.S. Kasper and S.M. Richards, Acta Cryst. 17, 752 (1964).

    Article  CAS  Google Scholar 

  10. M.T. Yin and M.L. Cohen, Phys. Rev Lett. 45, 1004 (1980).

    Article  CAS  Google Scholar 

  11. J.Z. Hu and I.L. Spain, Sol. State Comm. 51, 263 (1984).

    Article  CAS  Google Scholar 

  12. I.L. Spain, J.Z. Hu, C.S. Menoni and D. Black, J. de Physique 45., Colloque C8, 407(1984).

    Google Scholar 

  13. B.A. Weinstein and G.J. Piermarini, Phys. Rev. B 12, 1172 (1975).

    Article  CAS  Google Scholar 

  14. M.C. Gupta and A.L. Ruoff, J. Appl. Phys. 51, 1072 (1980).

    Article  CAS  Google Scholar 

  15. I.V. Gridneva, Yu. V. Milman, and V.I. Trefilov, phys. stat. sol. (a) 14, 177 (1972).

    Article  CAS  Google Scholar 

  16. J.J. Gilman, J. Mater. Res., in press.

  17. V.G. Eremenko and V.I. Nikitenko, phys. stat. sol. (a)14, 317 (1972).

    Article  CAS  Google Scholar 

  18. O. Shimomura, S. Minomura, N. Sakai, K. Asaumi, K. Tamura, J. Fukushima, and H. Endo, Philos. Mag. 29, 547 (1974).

    Article  CAS  Google Scholar 

  19. G.M. Pharr, W.C. Oliver, R.F. Cook, P.D. Kirchner, M.C. Kroll, T.R. Dinger, and D.R. Clarke, J. Mater. Res., submitted.

  20. D.R. Clarke, M.C. Kroll, P.D. Kirchner, R.F. Cook, and B.J. Hockey, Phys. Rev. Let. 21, 2156 (1988).

    Article  Google Scholar 

  21. G.M. Pharr, W.C. Oliver, and D.S. Harding, J. Mater. Res. 6, 1129 (1991).

    Article  CAS  Google Scholar 

  22. O. Mishima, L.D. Calvert, and E. Whalley, Nature 310, 393 (1984).

    Article  CAS  Google Scholar 

  23. O. Mishima, L.D. Calvert, and E. Whalley, Nature 314, 76 (1985).

    Article  CAS  Google Scholar 

  24. E. Whalley, Phvsica139 & 140B, 314 (1986).

    Google Scholar 

  25. Y. Paul, O. Mishima, and E. Whalley, J. Chem. Phys. 84, 2766 (1986).

    Article  Google Scholar 

  26. M.A. Floriano, E. Whalley, E.C. Svensson, and V.F. Sears, Phys. Rev. Let. 57, 3062(1986).

    Article  CAS  Google Scholar 

  27. J.S. Tse and M.L. Klein, Phys Rev. Let. 58, 1672 (1987).

    Article  CAS  Google Scholar 

  28. J. Maddox, Nature 326, 823 (1987).

    Article  Google Scholar 

  29. R.J. Hemley, A.P. Jephcoat, H.K. Mao, L.C. Ming, and M.H. Manghnani, Nature 334. 52 (1988).

    Article  CAS  Google Scholar 

  30. Y.K. Vohra, H. Xia, and A.L. Ruoff, Appl. Phys. Lett. 57, 2666 (1990).

    Article  CAS  Google Scholar 

  31. A. Polian, J.P. Itie, C.J. Carillon, E. Dartyge, A. Fontaine, and H. Tolentino, High Pressure Research 4, 309 (1990).

    Article  Google Scholar 

  32. J. Lankford and D.L. Davidson, J. Mater. Sci. 14, 1662 (1979).

    Article  CAS  Google Scholar 

  33. J. Lankford, J. Mater. Sci. 16, 1177 (1981).

    Article  CAS  Google Scholar 

  34. T. Sata, K. Takamoto, and H. Yoshikawa, Bull. Jap. Soc. Pree. Engrg. 3, 13 (1969).

    Google Scholar 

  35. K.E. Puttick, M.A. Shahid, and M.M. Hosseini, J. Phys. D 12, 195 (1979).

    Article  CAS  Google Scholar 

  36. B.R. Lawn and M.V. Swain, J. Mater. Sci. 10, 113 (1975).

    Article  CAS  Google Scholar 

  37. R.F. Cook and G.M. Pharr, J. Am. Ceram. Soc. 22, 787 (1990).

    Article  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the U.S. Department of Energy, Assistant Secretary for Conservation and Renewable Energy, Office of Transportation Technologies, as part of the Ceramic Technology for Advanced Heat Engines Project of the Advanced Materials Development Program, under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc., by the SHaRE program under contract DE-AC05-76OR00033 with Oak Ridge Associated Universities, and by the Office of Transportation Technologies, as part of the High Temperature Materials Laboratory User Program, under contract DE-AC05-84OR21400 managed by Marietta Energy Systems, Inc. The author would also like to acknowledge the numerous individuals who have collaborated with him on this work, particularly, Warren Oliver, Scott Harding, David Clarke, Robert Cook, Peter Kirchner, Cristi Kroll, and Tim Dinger.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pharr, G.M. The Anomalous Behavior of Silicon During Nanoindentation. MRS Online Proceedings Library 239, 301–312 (1991). https://doi.org/10.1557/PROC-239-301

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-239-301

Navigation