Skip to main content
Log in

A Strategy to Simulate the Dynamics of Molecular Assemblies Over Long Times

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We propose a strategy to simulate the dynamics of molecular assemblies over long times, provided they have a hierarchical and modular nature. In the scheme, fast fluctuations are averaged into a set of effective potentials (fluctuation softened potentials or FSPs), and the remaining slower dynamics are propagated in a drastically reduced configuration space (coupled energy landscapes or CEL). As a preliminary validation of the FSPs we compute the free energy of binding of a protein complex (RNase:barstar) for different relative positionings of the proteins. As a demonstration of CEL, we simulate the dynamics of microtubule unraveling upon hydrolysis of bound nucleotides. The method should allow the use of time steps hundreds to thousands of times longer than in conventional molecular dynamics, so that with only atomic structures and interactions as input, motions over human time scales (>ms) could be simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Henzler-Wildman et al., Nature 450, 913–916 (2007).

    Article  CAS  Google Scholar 

  2. O. F. Lange et al., Science 320, 1471–1475 (2008).

    Article  CAS  Google Scholar 

  3. T. Wang and R. C. Wade Prot: Struct. Func. Gen. 50, 158–169 (2003).

    CAS  Google Scholar 

  4. S. Yang J. N. Onuchic and H. Levine J. Chem. Phys. 125, 054910 (2006).

    Article  Google Scholar 

  5. J. Xing H. Wang and G. Oster Biophys. J. 89, 1551–1563 (2005).

    Article  CAS  Google Scholar 

  6. L. M. Rice E. A. Montabana and D. A. Agard PNAS 105, 5378–5383 (2008).

    Article  CAS  Google Scholar 

  7. E. Nogales and H.-W. Wang Curr. Op. Struct. Bio. 16, 221–229 (2006).

    Article  CAS  Google Scholar 

  8. R. B. Ravelli et al., Nature 428 198–202, (2004).

    Article  CAS  Google Scholar 

  9. D. N. Drechsel and M. W. Kirschner Curr. Bio. 4, 1053–1061 (1994).

    Article  Google Scholar 

  10. V. VanBuren D. J. Odde and L. Cassimeris PNAS 99, 6035–6040 (2002).

    Article  CAS  Google Scholar 

  11. T. Schlick E. Barth and M. Mandziuk An. Rev. Bio. Biomol. Struc. 26, 181–222 (1997)

    Article  CAS  Google Scholar 

  12. S. J. Marrink et al., J. Phys. Chem. B111, 7812–7824 (2007).

    Article  Google Scholar 

  13. B. M. Forrest and U. W. Suter J. Chem. Phys. 102, 7256–7266 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, J.T. A Strategy to Simulate the Dynamics of Molecular Assemblies Over Long Times. MRS Online Proceedings Library 1274, 602 (2010). https://doi.org/10.1557/PROC-1274-QQ06-02

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1274-QQ06-02

Navigation