Skip to main content
Log in

In-situ Kinetics Studies on Hydrogenation of Transition Metal (=Ti, Fe) Doped Mg Films

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

In this paper we report on kinetics studies of the growth rates of a hydride phase during the metal-hydride phase transformation of Mg films doped with transition metals (=Ti, Fe). Infrared emission imaging of wedge-shaped thin films during hydrogen loading reveals different effects of Ti and Fe additives on Mg hydride growth rates. Compared to hydrogenation of pure Mg, Ti addition (atomic fraction 1.6 % and 2.3 %) does not increase the Mg hydride growth rate. However, this doping results in the formation of a thicker hydride layer residing on top of the films. The hydrogenation rate is increased by an order of magnitude for addition of atomic fraction 3.1 % of Fe and the thickness of Mg hydride layer is more than twice that of the hydride layer during hydrogenation of pure Mg. Results obtained here can be used to guide powder design for hydrogen storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DOE. Hydrogen storage, http://www1.eere.energy.gov/hydrogenandfuelcells/storage/current_technology.html.

  2. S. Satyapal J. Petrovic C. Read G. Thomas G. Ordaz . Catal Today 120 246 (2007).

    Article  CAS  Google Scholar 

  3. G. Principi F. Agresti A. Maddalena and S. Lo Russo, Energy, 34 2087 (2009).

    Article  CAS  Google Scholar 

  4. F. D. Manshester A. San-Martin, Phase Diagrams of Binary Hydrogen Alloys, ASM International, 83, (2000).

  5. J. F. Stampferjk C. E. Holley and J. F. Scttle J. Amer. Chem. Soc., 82 3504 (1960).

    Article  Google Scholar 

  6. W. Oelerich T. Klassen R. Bormann J. Alloys Comp., 315 237 (2001).

    Article  CAS  Google Scholar 

  7. J. Charbonnier P. de Rango, D. Fruchart S. Miraglia L. Pontonnier S. Rivoirard N. Skryabina P. Vulliet J. Alloys Comp., 383 205 (2004).

    Article  CAS  Google Scholar 

  8. C. Milanese A. Girella G. Bruni V. Berbenni P. Cofrancesco A. Marini M. Villa P. Matteazzi J. Alloys Comp., 465 396 (2008).

    Article  CAS  Google Scholar 

  9. J. Huot G. Liang and R. Schulz Appl. Phys. A72 187 (2001).

    Article  Google Scholar 

  10. J.L. Bobet B. Chevalier M.Y. Song B. Darriet and J. Etourneau J. Alloys Comp., 336 292 (2002).

    Article  CAS  Google Scholar 

  11. S. N. Klyamkin Russ. J. Gen. Chem., 77 712 (2007).

    Article  CAS  Google Scholar 

  12. O. G. Ershova V. D. Dobrovolsky Y. M. Solonin O. Yu. Khyzhun and A. Yu. Koval J. Alloys Comp., 464 212 (2008).

    Article  CAS  Google Scholar 

  13. P. Larsson C. M. Araujo J. A. Larsson P. Jena and R. Ahuja PNAS, 105 8227 (2008).

    Article  CAS  Google Scholar 

  14. M. G. Cattania V. Penka R. J. Behm K. Christmann G. Ertl Surf. Sci.;126 382 (1983)

    Article  CAS  Google Scholar 

  15. H. Oguchi Z. Tan E. J. Heilweil and L. A. Bendersky Int. J. Hydro. Ener., doi:10.1016/j.ijhydene.2009.11.037 (in press) (2009).

  16. L. Zaluski A. Zaluska and J. O. StromOlsen J. Alloy. Compd. 253 70 (1997).

    Article  Google Scholar 

  17. R. A. Varin T. Czujko and Z. Wronski . Nanotechnology 17 3856 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, Z., Edwin, J.H. & Leonid, A.B. In-situ Kinetics Studies on Hydrogenation of Transition Metal (=Ti, Fe) Doped Mg Films. MRS Online Proceedings Library 1216, 404 (2009). https://doi.org/10.1557/PROC-1216-W04-04

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1216-W04-04

Navigation