Skip to main content
Log in

Lattice strain effects in graphane and partially-hydrogenated graphene sheets

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

This paper presents a brief review of recent developments in the studies of fully hydrogenated graphene sheets, also known as “graphane,” and related initial results on partially hydrogenated structures. For the fully hydrogenated case, some important discrepancies exist between published first-principles calculations, and between calculations and experiment, with qualitative differences on whether or not the graphene sheet expands or contracts upon hydrogenation. The lattice change has important effects on partially hydrogenated structures. First-principles calculations of ribbon structures, with interfaces between graphane and graphene regions, show that the interfaces have substantial misfit strains. Calculating the interfacial energy must carefully account for the strain energy in the neighboring regions, and for sufficiently large regions between interfaces, defects at the interface that relieve the strain may be energetically preferable. Tight-binding simulations show that at ambient temperatures, segments of graphene sheets may spontaneously combine with atomic hydrogen to form regions of graphane. Small amounts of chemisorbed hydrogen distort the graphene layer, due to the lattice misfit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. O. Sofo A. S. Chaudhari and G. D. Barber Phys. Rev. B75 153401 (2007).

    Article  Google Scholar 

  2. D. W. Boukhvalov M. I. Katsnelson and A. I. Lichtenstein Phys. Rev. B77 035427 (2008).

    Article  Google Scholar 

  3. F. W. Averill J. R. Morris and V. R. Cooper Phys. Rev. B80 195411 (2009).

    Article  Google Scholar 

  4. R. Ruoff Nature Nanotechnology 3 10 (2008).

    Article  CAS  Google Scholar 

  5. D. C. Elias et al., Science 323 610 (2009).

    Article  CAS  Google Scholar 

  6. P. Hohenberg and W. Kohn Phys. Rev. B136 864 (1964).

    Article  Google Scholar 

  7. W. Kohn and L. J. Sham Phys. Rev. 140 1133 (1965).

    Article  Google Scholar 

  8. G. Kresse and J. Furthmuller Computational Materials Science 6 15 (1996).

    Article  CAS  Google Scholar 

  9. G. Kresse and D. Joubert Phys. Rev. B59 1758 (1999).

    Article  Google Scholar 

  10. J. P. Perdew K. Burke and M. Ernzerhof Phys. Rev. Letters 77 3865 (1996).

    Article  CAS  Google Scholar 

  11. M. S. Tang C. Z. Wang C. T. Chan and K. M. Ho Phys. Rev. B53 979 (1996).

    Article  Google Scholar 

  12. B. C. Pan Phys. Rev. B64 (2001).

  13. Y. Lin F. Ding and B. I. Yakobson Phys. Rev. B78 041402 (2008).

    Article  Google Scholar 

  14. K. Nakada M. Fujita G. Dresselhaus and M. S. Dresselhaus Phys. Rev. B54 17954 (1996).

    Article  Google Scholar 

  15. D. Stojkovic P. Zhang P. E. Lammert and V. H. Crespi Phys. Rev. B68 195406 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

James, R.M., Frank, W.A., He, H. et al. Lattice strain effects in graphane and partially-hydrogenated graphene sheets. MRS Online Proceedings Library 1216, 310 (2009). https://doi.org/10.1557/PROC-1216-W03-10

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1216-W03-10

Navigation