Skip to main content
Log in

Atomistic Simulation on Hydrogen Storage in Metallic Nanoparticles

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Hydrogen storage in metallic nanoparticles was investigated by classical molecular dynamics and parameter physics. We observed phenomenological variation due to the differences in potential parameters of metal-hydrogen pair and crystal lattices. Three patterns of hydrogen distribution in both b.c.c. and f.c.c. nanoparticles were observed: non-absorbing, homogeneously-absorbing and heterogeneously-absorbing. In the last case, hydrogen atoms distribute just beneath the particle surface to form a hydrogen-rich layer. This layer prevents the diffusive motions of hydrogen atoms into the nanoparticle. We also carried out long simulation runs up to 1 nm to observed the structural variation of nanoparticles due to hydrogenation. Generation of grain boundaries was observed in b.c.c nanoparticles with the condition of strong metal–hydrogen interaction. Most of the grain boundaries were symmetric-tilt type and migrated inside the particle to reduce the interface energies. Formation of grain boundary was not observed in f.c.c. nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Mutschele, R. Kirchheim, Scr. Metall. 21, 1101 (1987).

    Article  Google Scholar 

  2. U. Stuhr, H. Wipf, T.J. Udovic, J. Weissmuller, H. Gleiter, J. Phys. Cond. Matter, 7, 219, (1995).

    Article  CAS  Google Scholar 

  3. L. Zluski, A. Zaluska, J. O. Ström-Olsen Olsen, J. Alloys Comp Comp. 253–4, 70, (1997).

    Google Scholar 

  4. H. Natter, B. Wettmann, B. Heisel, R. Hempelmann, J. Alloys Comp. Comp., 253–4, 84, (1997).

    Google Scholar 

  5. A. Pundt, C. Sachs, M. Winter, M.T. Reetz, D. Fritsch, R. Kirchheim, J. Alloy Comp., 293–5, 480 (1999).

    Google Scholar 

  6. M. Suleiman, N. M. Jisrawi, O. Dankert, M. T. Reetz, C. Bähtz, R. Kirchheim A. Pundt, J. Alloy Comp., 356–7, 644 (2003).

    Google Scholar 

  7. A. Pundt R. Kirchheim Ann. Rev. Mater. Res., 36, 555 (2006).

    Article  CAS  Google Scholar 

  8. M. S. Daw M. I. Baskes Phys. Rev. B29, 6443 (1984).

    Article  Google Scholar 

  9. Y. Fukai The Metal Hydrogen System, Chapter 7 (Springer, 1993).

    Book  Google Scholar 

  10. O. M. Løvvik, S. M. Opalka Phys. Rev B71, 054103 (2005).

    Article  Google Scholar 

  11. H. Ogawa A. Tezuka H. Wang T. Ikeshoji M. Katagiri Mater. Trans., 49, 1983 (2008).

    Article  CAS  Google Scholar 

  12. H. Ogawa A. Tezuka H. Wang T. Ikeshoji M. Katagiri Int. J. Nanosci., 8, 39 (2009).

    Article  CAS  Google Scholar 

  13. M. W. Finnis J. E. Sinclair Phil. Mag. A50, 45 (1984).

    Article  Google Scholar 

  14. M. Ruda D. Farkas J. Abriata, Phys. Rev. B54, 9765, (1996).

    Article  Google Scholar 

  15. H. Ogawa, Mater. Trans., 48, 2067, (2007).

    Article  CAS  Google Scholar 

  16. H. Ogawa Molec. Simul., 33, 159, (2007).

    Article  CAS  Google Scholar 

  17. R. Griessen A. Driessen Phys. Rev. B v. B30, 4372, (1984).

    Article  Google Scholar 

  18. Y. Ishido K. Nomura S. Ono Denki Kagaku, 46, 620 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogawa, H., Kayanuma, M. & Katagiri, M. Atomistic Simulation on Hydrogen Storage in Metallic Nanoparticles. MRS Online Proceedings Library 1216, 302 (2009). https://doi.org/10.1557/PROC-1216-W03-02

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1216-W03-02

Navigation