Skip to main content
Log in

First-principles Calculations of Phonon and Thermodynamic Properties of Hydrogen Storage α-LaNi5H

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The phonon distribution of hydrogen storage α-LaNi5H with 4h, 6m, 12n, and 12o interstitial hydrogen was calculated by using first-principles potential surfaces with a 2×2×2 supercell model in order to investigate structural and thermodynamic properties. Frequency shifts due to the phonon contribution from the internal energies of 12n < 6m < 12o < 4h appeared in specific modes originating from interstitial hydrogen and in the upper-edge modes with nickel-lattice motion. The thermodynamic stability of 12n interstitial hydrogen in α-LaNi5H due to the wide XZ storage space can be explained by its phonon amplitudes and the charge density around nickel-bonded hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. N. van Vucht, F. A. Kuijpers and H. C. A. M. Bruning Philips Res. Rep. 25 133 (1970).

    Google Scholar 

  2. J. M. Joubert M. Latroche R. Cerny A. Percheron-Guegan, and K. Yvon J. Alloys Compd. 330 208 (2002).

    Article  Google Scholar 

  3. S. Ono K. Nomura E. Akiba and H. Uruno J. Less-Common Met. 113 113 (1985).

    Article  CAS  Google Scholar 

  4. A. L. Shilov M. E. Kost and N. T. Kuznetsov J. Less-Common Met. 144 23 (1988).

    Article  CAS  Google Scholar 

  5. D. Ohlendorf and H. E. Flotow J. Chem. Phys. 73 2937 (1980).

    Article  CAS  Google Scholar 

  6. S. Srivastava and O. N. Srivastava J. Alloys Compd. 290 250 (1999).

    Article  CAS  Google Scholar 

  7. D. Noreus L. G. Olsson and P. E. Werner J. Phys. F: Met. Phys. 13 715 (1983).

    Article  CAS  Google Scholar 

  8. R. J. Radwanski N. H. Kim-Ngan, F. E. Kayzel J. J. M. Franse D. Gignoux D. Schmitt and F. Y. Zhang J. Phys.: Condens. Matter. 4 8853 (1992).

    CAS  Google Scholar 

  9. A. Szajek M. Jurezyk M. Nowak and M. Makowiecka Phys. Stat. Solidi (a) 196, 252 (2003).

    Article  CAS  Google Scholar 

  10. S. K. Malik F. J. Arlinghaus and W. E. Wallace Phys. Rev. B25 6488 (1982).

    Article  Google Scholar 

  11. L. G. Hector Jr., J. F. Herbst and T. W. Capehart J. Alloys Compd. 353 74 (2003).

    Article  CAS  Google Scholar 

  12. H. Nakamura D. Nguyen-Manh, and D. G. Pettifor J. Alloys Compd. 281 81 (1998).

    Article  CAS  Google Scholar 

  13. M. Mizuno H. Araki and Y. Shirai J. Phys.: Condens. Matter. 20 275232 (2008).

    Google Scholar 

  14. J. F. Herbst and L. G. Hector Jr., J. Alloys Compd. 446 188 (2007).

    Article  Google Scholar 

  15. Y. J. Zhao and A. J. Freeman J. Appl. Phys. 102 033518 (2007).

    Article  Google Scholar 

  16. Y. Yu H. Han Y. Zhao W. Xue and T. Gao Sol. Stat. Commun. 148 1 (2008).

    Article  CAS  Google Scholar 

  17. M. Sluiter M. Takahashi and Y. Kawazoe J. Alloys Compd. 248 90 (1997) .

    Article  CAS  Google Scholar 

  18. K. Parlinski Z. Q. Li and Y. Kawazoe Phys. Rev. Lett. 78 4063 (1997).

    Article  CAS  Google Scholar 

  19. S. Saito T. M. Inergaev H. Mizuseki N. Igarashi R. Note and Y. Kawazoe Chem. Phys. Lett. 423 441 (2006).

    Article  Google Scholar 

  20. H. Y. Wang H. Xu X. C. Wang and C. Z. Jiang Phys. Lett. A373 2082 (2009).

    Article  Google Scholar 

  21. C. Lee and X. Gonze Phys. Rev. B51 8610 (1995).

    Article  Google Scholar 

  22. G. Kresse and J. Joubert Phys. Rev. B59 1758 (1999).

    Article  Google Scholar 

  23. H. Senoh N. Takeichi H. T. Takeshita H. Tanaka T. Kiyobayashi and N. Kuriyama Mater. Trans. 44 1663 (2003).

    Article  CAS  Google Scholar 

  24. J. Soubeyroux A. Guegan and J. Achard J. Less-Comm. Met. 129 181 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, S., Katagiri, M., Tserolas, V. et al. First-principles Calculations of Phonon and Thermodynamic Properties of Hydrogen Storage α-LaNi5H. MRS Online Proceedings Library 1216, 301 (2009). https://doi.org/10.1557/PROC-1216-W03-01

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1216-W03-01

Navigation