Skip to main content

Interface quality of atomic layer deposited La-doped ZrO2 films on Ge-passivated In0.15Ga0.85As substrates

Abstract

La-doped ZrO2 thin films were grown by O3-based atomic layer deposition on III-V (GaAs, In0.15Ga0.85As) substrates. The direct oxide deposition and the insertion of a Ge passivation layer in between the oxide and the substrate are compared in terms of the resulting density of interface traps. An improved electrical quality of the Ge-passivated interfaces concerning the energy region close to the conduction band edge in the semiconductor band-gap is demonstrated through conductance maps at various temperatures and it is attributed to Ga-related interfacial defects.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. Takagi, T. Irisawa, T. Tezuka, T. Numata, S. Nakaharai, N. Hirashita, Y. Moriyama, K. Usuda, E. Toyoda, S. Dissanayake, N. Sugiyama, IEEE Trans. Electr. Dev. 55, 21 (2008).

    CAS  Article  Google Scholar 

  2. 2.

    W. E. Spicer, Z. Liliental-Weber, E. Weber, N. Newman, T. Kendelewicz, R. Cao, C. McCants, P. Mahowald, K. Miyano, and I. Lindau, J. Vac. Sci. Technol. B6, 1245 (1988).

    Article  Google Scholar 

  3. 3.

    M. J. Hale, S. I. Yi, J. Z. Sexton, A. C. Kummel, M. Passlack, J. Chem. Phys. 119, 6719 (2003).

    CAS  Article  Google Scholar 

  4. 4.

    J. Robertson, Appl. Phys. Lett. 94, 152104 (2009)

    Article  Google Scholar 

  5. 5.

    M. Scarrozza, G. Pourtois, M. Houssa, M. Caymax, A. Stesmans, M. Meuris, M.M. Heyns, Microelectr. Engineer. 86, 1747 (2009).

    CAS  Article  Google Scholar 

  6. 6.

    P. D. Ye, J. Vac. Sci. Technol. A 26, 697 (2008).

    Article  Google Scholar 

  7. 7.

    H. C. Lin, G. Brammertz, K. Martens, G. de Valicourt, L. Negre, W.-E Wang, W. Tsai, M. Meuris, and M. Heyns, Appl. Phys. Lett. 94, 153508 (2009)

    Article  Google Scholar 

  8. 8.

    Y. Xuan and P.D. Ye, IEEE Trans. Electron Devices 54, 1811 (2007).

    CAS  Article  Google Scholar 

  9. 9.

    M. Kobayashi, P. T. Chen, Y. Sun, N. Goel, P. Majhi, M. Garner, W. Tsai, P. Pianetta, and Y. Nishi, Appl. Phys. Lett. 93, 182103 (2008).

    Article  Google Scholar 

  10. 10.

    K. H. Shiu, T. H. Chiang, P. Chang, L. T. Tung, M. Hong, J. Kwo, and W. Tsai, Appl. Phys. Lett. 92, 172904 (2008).

    Article  Google Scholar 

  11. 11.

    C. Marchiori, D.J. Webb, C. Rossel, M. Richter, M. Sousa, C. Gerl, R. Germann, C. Andersson, and J. Fompeyrine, J. Appl. Phys. 106, 114112 (2009).

    Article  Google Scholar 

  12. 12.

    A. Molle, G. Brammertz, L. Lamagna, M. Fanciulli, M. Meuris, and S. Spiga, Appl. Phys. Lett. 95, 023507 (2009).

    Article  Google Scholar 

  13. 13.

    L. Lamagna, C. Wiemer, S. Baldovino, A. Molle, M. Perego, S. SchammChardon, P. E. Coulon, and M. Fanciulli, Appl. Phys. Lett. 95, 122902 (2009).

    Article  Google Scholar 

  14. 14.

    D. Kuzum, T. Krishnamohan, A. J. Pethe, A. K. Okyay, Y. Oshima, Y. Sun, J. P. McVittie, P. A. Pianetta, P. C. McIntyre, and K. C. Saraswat, IEEE Elecron Device Lett. 29, (4) 328 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    S. Spiga, C. Wiemer, G. Tallarida, G. Scarel, S. Ferrari, G. Seguini, and M. Fanciulli, Appl. Phys. Lett. 87, 112904 (2005).

    Article  Google Scholar 

  16. 16.

    D. Fischer and A. Kersch, Appl. Phys. Lett. 92, 012908 (2008).

    Article  Google Scholar 

  17. 17.

    G. Brammertz, H. C. Lin, K. Martens, D. Mercier, C. Merckling, J. Penaud, C. Adelmann, S. Sioncke, W. E. Wang, M. Caymax, M. Meuris, J. Electrochem. Soc. 155, H945 (2008).

    CAS  Article  Google Scholar 

  18. 18.

    W. Schockley and W. T. Read, Phys. Rev. 87, 835 (1953).

    Article  Google Scholar 

  19. 19.

    E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley ( New York, 1981), p. 115–136 and p. 212–221.

    Google Scholar 

  20. 20.

    G. Brammertz, H.-C. Lin, K. Martens, D. Mercier, S. Sioncke, A. Delabie, W. E. Wang, M. Caymax, M. Meuris, and M. Heyns, Appl. Phys. Lett. 93, 183504 (2008)

    Article  Google Scholar 

  21. 21.

    It should be noted that the trap distribution can be here extracted in the upper half side of the semiconductor gap as only n-type substrate are taken into account, i.e. only electrons are exchanged with the interface trap levels.

  22. 22.

    W. A. Harrison, J. Vac. Sci. Technol. 16, 1492 (1979).

    CAS  Article  Google Scholar 

  23. 23.

    C. L. Hinkle, M. Milojevic, B. Brennan, A. M. Sonnet, F. S. Aguirre-Tosatdo, G. J. Hughes, E. M. Vogel, and R. M. Wallace, Appl. Phys. Lett. 94, 162101 (2009).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Molle.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Molle, A., Brammertz, G., Lamagna, L. et al. Interface quality of atomic layer deposited La-doped ZrO2 films on Ge-passivated In0.15Ga0.85As substrates. MRS Online Proceedings Library 1194, 80–88 (2009). https://doi.org/10.1557/PROC-1194-A08-10

Download citation