Skip to main content
Log in

Fabrication and Characterization of Thermoelectric Generators From SiO2/SiO2+Au Nano-layered Superlattices

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The efficiency of the thermoelectric devices is limited by the properties of n- and p-type semiconductors. Effective thermoelectric materials have a low thermal conductivity and a high electrical conductivity. The performance of the thermoelectric materials and devices is shown by a dimensionless figure of merit, ZT = S2σT/K, where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature and K is the thermal conductivity. In this study we prepared the thermoelectric generator device of SiO2/SiO2+ Au multi-layer super-lattice films using the ion beam assisted deposition (IBAD). In order to determine the stoichiometry of the elements of SiO2 and Au in the grown multilayer films and the thickness of the grown multi-layer films Rutherford Backscattering Spectrometry (RBS) and RUMP simulation software package was used. The 5 MeV Si ion bombardments was performed to make quantum clusters in the multilayer super-lattice thin films to decrease the cross plane thermal conductivity, increase the cross plane Seebeck coefficient and cross plane electrical conductivity. To characterize the thermoelectric generator devices before and after Si ion bombardments we measured the cross-plane Seebeck coefficient, the cross-plane electrical conductivity, and the cross-plane thermal conductivity for different fluences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Budak C. Muntele B. Zheng D. Ila Nuc. Instr. and Meth. B 261 (2007) 1167.

    Article  CAS  Google Scholar 

  2. Brian C. Scales Science 295 (2002) 1248.

    Article  Google Scholar 

  3. G. Slack in: D. M. Rowe (Ed.), CRC Handbook of Thermoelectrics, CRC Press, 1995, p.407.

  4. S. Guner S. Budak R. A. Minamisawa C. Muntele D. Ila Nuc. Instr. and Meth. B 266 (2008) 1261.

    Article  Google Scholar 

  5. B C. -K. Huang J. R. Lim J. Herman M. A. Ryan J. -P. Fleural N. V. Myung Electrochemical Acta 50 (2005) 4371.

    Article  Google Scholar 

  6. T.M. Tritt ed., Recent Trends in Thermoelectrics, in Semiconductors and Semimetals, 71, (2001).

  7. L. R. Holland R. C. Smith J. Apl. Phys. 37 (1966) 4528.

    Article  CAS  Google Scholar 

  8. D. G. Cahill M. Katiyar J. R. Abelson Phys. Rev.B 50 (1994) 6077.

    Article  CAS  Google Scholar 

  9. T. B. Tasciuc A.R. Kumar G. Chen Rev. Sci. Instrum. 72 (2001) 2139.

    Article  Google Scholar 

  10. L. Lu W. Yi, D. L. Zhang Rev. Sci. Instrum. 72 (2001) 2996.

    Article  CAS  Google Scholar 

  11. J. F. Ziegler J. P. Biersack U. Littmark The Stopping Range of Ions in solids, Pergamon Press, New York, 1985.

    Google Scholar 

  12. W. K. Chu J. W. Mayer M. -A. Nicolet Backscattering Spectrometry, Academic Press, New York, 1978.

    Book  Google Scholar 

  13. L. R. Doolittle M. O. Thompson RUMP, Computer Graphics Service, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pugh, M., Hill, R., James, B. et al. Fabrication and Characterization of Thermoelectric Generators From SiO2/SiO2+Au Nano-layered Superlattices. MRS Online Proceedings Library 1181, 123–127 (2009). https://doi.org/10.1557/PROC-1181-DD13-05

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-1181-DD13-05

Keywords

Navigation