Skip to main content
Log in

Suitability of Atmospheric-Pressure MOCVD CdTe Solar Cells for Inline Production Scale

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

CdTe, with a direct band gap of 1.45 eV is well suited to the terrestrial AM1.5 solar irradiance and currently makes up half of the thin film (TF) photovoltaic (PV) market. There are 4 main factors that determine final cost of PV modules: the conversion efficiency, materials amount per unit area of module, production yield, and the economy of scale. It is therefore valuable to investigate alternative and/or innovative deposition techniques and processes which have the potential to impact on these factors. Metal organic chemical vapour deposition (MOCVD) is a powerful technique offering increased process repeatability, achieving a high level of control of materials characteristics. Recent improvements in CdTe devices using atmospheric–pressure (AP) MOCVD have led to efficiencies of 13.3 % using 2 μm absorber layers and 11 % with a 1 μm absorber layer [11, 12]. These results were achieved: by extending the optical band gap of the window layer, using a ternary alloy (Cd0.9Zn0.1S), with intentional p-type doping of the CdTe layers with As, and the use of anin situ (dry) deposited CdCl2 layer and anneal. All layers, except the front and back contact, are grown by a sequential MOCVD process. Furthermore this is a dry process without the need for any etch treatment. The inherent design of the horizontal MOCVD laboratory chambers do not lend themselves well to large scale production. However, the CSER group has designed and built an experimental inline reaction chamber to evaluate AP-MOCVD as an inline production process. Discussion is made based on kinetically limited growth and molar supply models to assess the suitability of the MOCVD process to deposit fast enough for an inline process. The AP-MOCVD inline reactor uses a showerhead to deliver the precursors onto a moving 5 × 7.5 cm2 substrate and preliminary results for deposited layers are given. From these preliminary results it has been extrapolated that a 1 μm thick CdTe layer can be deposited on substrates moving at 60 cm/min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Pearce, Renewable Energy 33, 1101 (2008).

    Article  CAS  Google Scholar 

  2. The information Network, Solar, Autumn 1, 13 (2008).

    Google Scholar 

  3. D. Bonnet and H. Rabenhorst, Proceedings of the 9th Photovoltaic Spec. Conf., 129 (1972).

  4. H.M. Upadhyaya, T.M. Razykov and A.N. Tiwari, “Handbook of Energy Efficiency and Renewable Energy” edited by F. Kreith, D.Y. Goswami (CRC Press) (2007), 23–45.

  5. X. Wu, J. C. Keane, R. G. Dhere, C. Dehert, D. S. Albin, A. Dude, T. A. Gessert, S. Asher, D. H. Levi, and P. Sheldon, Proceedings of the 17th European Photovoltaic Solar Energy Conference, Munich, Germany, vol. II, 995 (2001).

  6. M. Stan, D. Aiken, B. Cho, A. Cornfeld, J. Diaz, V. Ley, A. Korostyshevsky, P. Patel, P. Sharps, T. Varghese, J. Crystal Growth 310, 5204 (2008).

    Article  CAS  Google Scholar 

  7. A.G. Aberle, Thin Solid Films (2009) (doi: 10.1016/j.tsf.2009.03.056).

  8. A. Nouhi, P.V. Meyers, R.J. Stirn, and C.H. Liu, J. Vac. Sci. Technol. A 7(3), 833 (1989).

    Article  Google Scholar 

  9. H.C. Chou, A. Rohatgi, J. Electronic Mat. 23(1), 31 (1994).

    Article  CAS  Google Scholar 

  10. R.A. Berrigan, N. Maung, S.J.C. Irvine, D.J. Cole-Hamilton and D. Ellis, J. Crystal Growth 195, 718 (1998).

    Article  CAS  Google Scholar 

  11. S.J.C. Irvine, V. Barrioz, D. Lamb, E.W. Jones and R.L. Rowlands-Jones, J. Crystal Growth 310(23), 5198 (2008).

    Article  CAS  Google Scholar 

  12. E.W. Jones, V. Barrioz, S.J.C. Irvine and D. Lamb, Thin Solid Films 517(7), 2226 (2009).

    Article  CAS  Google Scholar 

  13. V. Barrioz, Y. Proskuryakov, E.W. Jones, J. Major, S.J.C. Irvine, K. Durose and D. Lamb, Mat. Res. Soc. Symp. Proc. 1012, Y12-08 (2007).

    Article  Google Scholar 

  14. V. Barrioz, S.J.C. Irvine, E.W. Jones, R.L. Rowlands, D.A. Lamb, Thin Solid Films 515(15), 5808 (2007).

    Article  CAS  Google Scholar 

  15. V. Barrioz, D.A. Lamb, E.W. Jones, Y.Y. Proskuryakov, S.J.C. Irvine and K. Durose, 23rd European Photovoltaic Solar Energy Conference, 1–5 September, Valencia, Spain, 2186 (2008).

  16. G.B. Stringfellow, “Organometallic vapor-phase epitaxy: theory and practice”, 2nd Ed. Academic Press (1999) 211.

  17. S.J.C. Irvine and J. Bajaj, J. Crystal Growth 145, 74 (1994).

    Article  CAS  Google Scholar 

  18. S.J.C. Irvine, A. Hartley and A. Stafford, J. Crystal Growth 221, 117 (2000)

    Article  CAS  Google Scholar 

  19. S.J.C. Irvine, J.B. Mullin, H. Hill, G.T. Brown and S.J. Barnett, J. Crystal Growth 86, 188 (1988).

    Article  CAS  Google Scholar 

  20. N. Amin, K. Sopian and M. Konagai, Sol. Energy Mater. Sol. Cells 91, 1202 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrioz, V., Lamb, D.A., Jones, E.W. et al. Suitability of Atmospheric-Pressure MOCVD CdTe Solar Cells for Inline Production Scale. MRS Online Proceedings Library 1165, 703 (2009). https://doi.org/10.1557/PROC-1165-M07-03

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1165-M07-03

Navigation