Skip to main content
Log in

Structural Properties of Chalcopyrite-related 1:3:5 Copper-poor Compounds and their Influence on Thin-film Devices

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Chalcopyrite-based devices show highest conversion efficiencies among present thin film architectures with values of 20% at laboratory scale. This outstanding performance has been achieved for quaternary Cu(Inx,Ga1-x)Se2 (x˜0.7) compound material. However, a strong correlation between the performance and the gallium content or, in other words, low versus high bandgap materials has been recognized. One critical issue in this discussion is the formation of a copper-depleted near-surface phase with 1:3:5 and 1:5:8 stoichiometries. In earlier reports, surface phases with corresponding compositions have been found on CuInSe2, CuGaSe2 and Cu(Inx,Ga1-x)Se2 thin films. These near-surface phases show a positive influence on the performance of cells based on low bandgap Cu(Inx,Ga1-x)Se2 material due to n-type inversion and band gap widening compared to bulk properties. A tendency towards a neutral or even a negative impact of the near-surface phase on wide band gap material (high gallium content) has recently been reported [1]. Nevertheless, the structural models of copper-poor chalcopyrite-related compounds have been controversially discussed in literature but a stannite-type structural model is most suitable as will be presented. In any case, the relation of the structural properties between chalcopyrite and 1:3:5 phases is crucial for the performance of related devices.

In this contribution we will report about the structural analysis of the Cu(Inx,Ga1-x)3Se5 solid solution series by means of anomalous x-ray scattering using synchrotron radiation, powder and single crystal neutron diffraction. Contributions of the isoelectronic species Cu+ and Ga3+ could be separated by these experiments. Bulk samples synthesized from the elements and heat treated at 650°C after the main reaction step - the latter in order to allow equilibrium structure formation - were investigated. Structural data like lattice parameters, tetragonal distortion and cation distribution were obtained for the complete Cu(Inx,Ga1-x)3Se5 solid solution series. The stannite-type structural model was assigned to all members of the investigated 1:3:5s which will be strengthened by simulations. We observed that the tetragonal distortion vanishes for compositions close to a gallium content as used for highest efficiency Cu(Inx,Ga1-x)Se2 devices. However, the tetragonal distortion depends critically on the cation distribution which is in turn controlled by the thermal history of the sample, as we have recently reported for pure CuGaSe2 [1]. This means that we can plot a direct correlation for the misfit between chalcopyrite and 1:3:5 phases depending on the gallium content and the thermal treatment of the considered thin films. These results will widen the understanding of the chalcopyrite-based thin film photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Green, K. Emery, Y. Hishikawa and W. Warta, Prog. Phot.: Res. Appl., 17, 85, (2009)

    Article  CAS  Google Scholar 

  2. D. Schmid, M. Ruckh and H.W. Schock, Appl. Surf. Science, 103, 409–426, (1992)

    Article  Google Scholar 

  3. A. Meeder, L. Weinhardt, R. Stresing, D. Fuertes Marrón, R. Würz, S.M. Babu, T. Schedel-Niedrig, M.C. Lux-Steiner, C. Heske and E. Umbach, Jour. of Phys. and Chem. of Solids, 64, 1553–1557, (2003)

    Article  CAS  Google Scholar 

  4. S. Lehmann, M. Bär, D. Fuertes Marrón, P. Pistor, S. Wiesner, M. Rusu, I. Kötschau, I. Lauermann, A. Grimm, S. Sokoll, C.-H. Fischer, T. Schedel-Niedrig, M.C. Lux-Steiner and Ch. Jung, Thin Solid Films, 511-512, 623–627, (2006)

    Article  CAS  Google Scholar 

  5. M. Bär, M. Rusu, S. Lehmann, Th. Schedel-Niedrig, I. Lauermann, and M.Ch. Lux-Steiner, Appl. Phys. Lett., 93, 232104, (2008)

    Article  Google Scholar 

  6. S. Lehmann, D. Fuertes Marrón, M. Tovar, Y. Tomm, C. Wolf, S. Schorr, T. Schedel-Niedrig, E. Arushanov, and M. Ch. Lux-Steiner, Phys. Stat. Sol. A DOI 10.1002/pssa.200881221 (2009)

  7. A.-J. Dianoux and G. Lander, Neutron Data Booklet (ILL), (2001)

  8. H.M. Rietveld, Jour. Appl. Cryst., 2, 65–71, (1969)

    Article  CAS  Google Scholar 

  9. D.M. Többens, N. Stüßer, K. Knorr, H.M. Mayer, and H. Lampert, Mat. Science Forum, 378-381, 288–293, (2001)

    Article  Google Scholar 

  10. http://ts.nist.gov/MeasurementServices/ReferenceMaterials/

  11. http://www.ill.eu/sites/fullprof/

  12. J.C. Mikkelsen, J. Electr. Mater., 10(3), 541, (1981)

    Article  CAS  Google Scholar 

  13. L.S. Palatnik and E.K. Belova, Soviet Physics Crystallography, 10(4), 395, (1967)

    Google Scholar 

  14. T. Gödecke, T. Haalboom, and F. Ernst, Zeitschrift f. Metallkunde, 91(8), 622, (2000)

    Google Scholar 

  15. U.-C. Boehnke and G. Kuehn, J. Mat. Science, 22, 1635, (1987)

    Article  CAS  Google Scholar 

  16. S. Schorr, G. Geandier, and B.V. Korzun, Phys. Stat. Sol. (c), 3(8), 2610,(2006)

    Article  CAS  Google Scholar 

  17. S. Lehmann, PhD thesis, Freie Universität Berlin, 2007

  18. Merino/Lehmann to be submitted

  19. H.P. Wang, L.L. Lam, and I. Shih, J. Crys. Growth, (200), 137, (1999)

    Article  CAS  Google Scholar 

  20. G. Marín, S. Tauleigne, S.M. Wasim, R. Guevara, J.M. Delgado, C. Rincón, A.E. Mora, and G.S. Pérez, Mat. Res. Bull., 33(7), 1057–1068, (1998)

    Article  Google Scholar 

  21. W. Paskowicz, R. Lewandowska, and R. Bacewicz, Jour. of All. Comp., 362, 241, (2004)

    Article  Google Scholar 

  22. W. Hönle, G. Kühn, and U.-C. Boehnke, Cryst. Res. Technol., 23(10/11), 1347, (1988)

    Article  Google Scholar 

  23. T. Hanada, A. Yamana, Y. Nakamura, O. Nittono, and T. Wada, Jpn, J. Appl. Phys., 36(Part2, No. 11B), L1494, (1997)

    Article  CAS  Google Scholar 

  24. C. Manolikas, J.van Landuyt, R.de Ridder, and S. Amelinckx, Phys. Stat. Sol. (a), 55, 709, (1979)

    Article  CAS  Google Scholar 

  25. S.B. Zhang, S.-H. Wei, and A. Zunger, Phys. Rev. Lett., 78(21), 4059, (1997)

    Article  CAS  Google Scholar 

  26. International Tables for Crystallography: Volume A, Kluwer Academic Publishers, (1999)

  27. Young, R. A.: “The Rietveld Method”, Oxford University Press, (1995)

  28. D.K. Suri, K.C. Nagpal, and G.K. Chadha, J. Appl. Cryst., 22, 578, (1989)

    Article  CAS  Google Scholar 

  29. W. Shafarman, R. Klenk, and B.E. Mccandless, J. Appl. Phys., 79, 7324, (1996)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lehmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehmann, S., Marrón, D.F., Merino, J.M. et al. Structural Properties of Chalcopyrite-related 1:3:5 Copper-poor Compounds and their Influence on Thin-film Devices. MRS Online Proceedings Library 1165, 309 (2009). https://doi.org/10.1557/PROC-1165-M03-09

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1165-M03-09

Navigation