Skip to main content
Log in

Nano-engineering by MeV Ion Beams

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Thin silica films embedded with Au nanoparticles (NPs) were prepared by atom beam co-sputtering and RF-magnetron sputtering. The growth kinetics of Au NPs in atom beam co-sputtered film, under 90 MeV Ni ion irradiation, was studied by in-situ X ray diffraction experiment in the materials science beam line at IUAC, New Delhi. The growth of NPs from 4 nm (for pristine) to 9 nm at a fluence of 1 × 1014 ions/cm2 was observed with rapid growth upto the size track diameter, however slowed beyond it. 120 MeV Au ion irradiation of RF magnetron sputtered films resulted in the elongation of Au NPs along ion beam direction. The aspect ratio of elongated NPs (Au nanorods) is found to be ∼3.5, which mainly depends on the electronic energy deposited within the system. Hence the present work reports that the ion irradiation is an effective tool for tailoring the size, shape and size distribution of NPs. The results are discussed in the framework of thermal spike model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Yin and P. Alivisatos, Nature 437, 664 (2005).10.1038/nature04165

    Article  CAS  Google Scholar 

  2. Ekmel Ozbay, Science 311, 189 (2006).10.1126/science.1114849

    Article  CAS  Google Scholar 

  3. K. Ikeda, K. Kobayashi, and M. Fujimoto, J. Appl. Phys. 92, 5395(2002).10.1063/1.1510562

    Article  CAS  Google Scholar 

  4. Paul Alivisatos, Nature Biotechnology 22, 47 (2003).10.1038/nbt927

    Article  Google Scholar 

  5. C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, Nature 382, 607 (1996).10.1038/382607a0

    Article  CAS  Google Scholar 

  6. U. Kreibig & M. Volmer, Optical Properties of Metal Clusters: Springer Series in Materials Science 25; Springer: Berlin 1995.10.1007/978-3-662-09109-8

    Book  Google Scholar 

  7. A. Biswas, O. C. Aktas, U. Schurmann, U. Saeed, V. Zaporojtchenko, F. Faupel, and T. Strunskus, Appl. Phys. Lett. 84, 2655 (2004).10.1063/1.1697626

    Article  CAS  Google Scholar 

  8. D. K. Avasthi, Y. K. Mishra, D. Kabiraj, N. P. Lalla and J. C. Pivin, Nanotechnology 18, 125604 (2007).10.1088/0957-4484/18/12/125604

    Article  Google Scholar 

  9. U. Schürmann, W. Hartung, H. Takele, V. Zaporojtchenko and F. Faupel, Nanotechnology 16, 1078 (2005).10.1088/0957-4484/16/8/014

    Article  Google Scholar 

  10. U. Kreibig and C. V. Fragstein, Z. Phys. 224, 307 (1969).10.1007/BF01393059

    Article  CAS  Google Scholar 

  11. U. Kreibig, J. Phys. F: Metal Phys 4, 999 (1974).

    CAS  Google Scholar 

  12. K. Lance Kelly, E. Coronado, L. L. Zhao and G.C. Schatz, J. Phys. Chem. B. 107, 668 (2003)10.1021/jp026731y

    Article  CAS  Google Scholar 

  13. H. Raether, Surface Plasmons (Springer, Berlin, 1998).

    Google Scholar 

  14. Y. K. Mishra, S. Mohapatra, D. Kabiraj, B. Mohanta, N. P. Lalla, J. C. Pivin and D. K. Avasthi, Scripta Mater. 56, 629 (2007).

    Article  CAS  Google Scholar 

  15. Y. K. Mishra, S. Mohapatra, D. K. Avasthi, D. Kabiraj, N. P. Lalla, J. C. Pivin, H. Sharma, Rajarshi Kar and Neeta Singh, Nanotechnology 18, 345606 (2007).10.1088/0957-4484/18/34/345606

    Article  Google Scholar 

  16. Y. K. Mishra, D. Kabiraj, I. Sulania, J. C. Pivin and D. K. Avasthi, Jour. of Nanosci. & Nanotech. 7, 1878 (2007).

    Article  CAS  Google Scholar 

  17. Y. K. Mishra, S. Mohapatra, D. Kabiraj, A. Tripathi, J. C. Pivin and D. K. Avasthi, J. Opt. A: Pure Appl. Opt. 9, S410 (2007).10.1088/1464-4258/9/9/S21

    Article  Google Scholar 

  18. M. Christine Daniel and D. Astruc, Chem. Rev. 104, 293 (2004)

    Article  CAS  Google Scholar 

  19. C. D’Orleans, J. P. Stoquert, C. Estourne’s, C. Cerruti, J. J. Grob, J. L. Guille, F. Haas, D. Muller, and M. Richard-Plouet, Phys. Rev. B 67, 220101 (R) (2003).10.1103/PhysRevB.67.220101

    Article  Google Scholar 

  20. S. Roorda, T. V. Dillen, A. Polman, C. Graf, A. V. Blaaderen and B. J. Kooi, Adv. Mater. 16, 235 (2004).

    Article  CAS  Google Scholar 

  21. J. J. Penninkhof, C. Graf, T. V. Dillen, A. M. Vredenberg, A. V. Blaaderen and A. Polman, Adv. Mater. 17, 1484 (2005).10.1002/adma.200401742

    Article  CAS  Google Scholar 

  22. A. Oliver, J. A. R. Esqueda, J. C. C. Wong, C. E. R. Velázquez, A. C. Sosa, L. R. Fernandez, J. A. Seman, and Cecilia Noguez, Phys. Rev. B 74, 245425 (2006).10.1103/PhysRevB.74.245425

    Article  Google Scholar 

  23. Y. K. Mishra, D. K. Avasthi, P. K. Kulriya, F. Singh, D. Kabiraj, A. Tripathi, J. C. Pivin, I. S. Bayer and A. Biswas, Appl. Phys Lett. 90, 73110 (2007).10.1063/1.2642824

    Article  Google Scholar 

  24. Y. K. Mishra, F Singh, D. K. Avasthi, J. C. Pivin, D. Malinovska, E. Pippel, Appl. Phys. Lett. 91, 063103 (2007).10.1063/1.2764556

    Article  Google Scholar 

  25. R. Doolittle, Nucl. Instr. and Meth. B, 9, 291 (1985).10.1016/0168-583X(85)90762-1

    Article  Google Scholar 

  26. J. F. Ziegler, Z. P. Biersack and U. Littmark, The Stopping and Range of Ions in Solids, (Pergamum, New York, 1985) [www.srim.org]

    Google Scholar 

  27. W.-H. Li, S.Y. Wu, C.C. yang, S. K. Lai and K. C. Lee, Phys. Rev. Lett. 89, 135504 (2002).10.1103/PhysRevLett.89.135504

    Article  Google Scholar 

  28. A. Meftah, F. Brisard, M. Costantini, E. Dooryhee, M. Hage-Ali, M. Hervieu, J. P. Stoquert, F. Studer, and M. Toulemonde, Phys. Rev. B 49, 12457 (1994).10.1103/PhysRevB.49.12457

    Article  CAS  Google Scholar 

  29. M. Toulemonde, J. M. Costantini, Ch. Dufour, A Meftah, E. Paumier, and F. Studer, Nucl. Instr. and Meth. B 116, 37 (1996).10.1016/0168-583X(96)00007-9

    Article  CAS  Google Scholar 

  30. S. Klaumunzer, M. D. Hou and G. Schumacher, Phys. Rev. Lett. 57, 850 (1986).10.1103/PhysRevLett.57.850

    Article  CAS  Google Scholar 

  31. S. K. Srivastva, D. K. Avasthi, and E. Pippel, Nanotechnology 17, 2518 (2006).

    Article  Google Scholar 

  32. M. L. Brongersma, E. Snoeks and A. Polman, Appl. Phys. Lett. 71, 1628 (1997).10.1063/1.119999

    Article  CAS  Google Scholar 

  33. M. L. Brongersma, E. Snoeks and A. Polman, J. Appl. Phys. 88, 59 (2000).10.1063/1.373624

    Article  CAS  Google Scholar 

  34. J. C. Pivin, G. Roger, M. A. Garcia, F. Singh, and D. K. Avasthi, Nucl. Instr. and Methods B 215 (2004) 373.10.1016/j.nimb.2003.07.002

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yogendra, K.M., Devesh, K.A., Singh, F. et al. Nano-engineering by MeV Ion Beams. MRS Online Proceedings Library 1027, 505 (2007). https://doi.org/10.1557/PROC-1027-D05-05

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1027-D05-05

Navigation