Skip to main content
Log in

In-situ GISAXS on Nanocomposite Films of CdS Nanoparticles and Polymers

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We investigated the growth of CdS nanoparticles in polymer films by means of ex-situ and in-situ x-ray scattering experiments using synchrotron radiation. The CdS nanoparticles were synthesized by thermal decomposition of a Cd thiolate precursor dispersed in a cyclic olefin copolymer. The films were deposited by spin coating. Grazing incidence diffraction (GID) reveals the Bragg reflections of the CdS nanoparticles. In-situ diffraction and grazing incidence small angle scattering (GISAXS) experiments were recorded during the thermal treatment of the precursor/polymer films from room temperature up to 250°C. The diffraction curves show that the initial precursor structure is soon lost at 100°C. Correspondingly, the GISAXS data show a peak at a momentum transfer value q ∼ 0.2Å−1 that shifts towards smaller values with the temperature. Under UV excitation the films show photoluminescence in the range 400 – 700 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Shipway, E. Katz, and I. Willner, Chemphyschem 1, 18 (2000), Wiley-VCH-Verlag, Weinheim.

    Google Scholar 

  2. R. Rossetti, J. L. Ellison, J. M. Gibson, and L. E. Brus, J. Chem. Phys. 80, 4464 (1984); A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lasnyak, A. Shavel, A. Eychmüller, Y. P. Rakovic, and J. F. Donegan, J. Phys. Chem. C 111, 14628 (2007) and references therein.

    Article  CAS  Google Scholar 

  3. S. Coe, W. Woo, M. Bawendi and V. Bulović, Nature 420, 800 (2003); S. Coe-Sullivan, J. S. Steckel, W. Woo, M. G. Bawendi, and V. Bulović, Adv. Funct. Mater. 15, 1117 (2005).10.1038/nature01217

    Article  Google Scholar 

  4. X. Chen, Y. Jiang, Z. Wu, D. Li, Yang J, Sensors and Actuators B 66, 37 (2000); R. A. Potyrailo and A. M. Leach, Appl. Phys. Lett. 88, 134110 (2006).10.1016/S0925-4005(99)00448-7

    Article  CAS  Google Scholar 

  5. A. E. Varfolomeev, A. V. Volkov, D. F. Zaretskii, M. A. Moskvina and V. Z. Mordkovich, Technical Physics Letters 30, 663 (2004).10.1134/1.1792306

    Article  CAS  Google Scholar 

  6. U. Pietsch, T. H. Metzger and J. Peisl, Phys. Rev. Lett. 73, 2228 (1994); K. PaschkeT. H. Metzger, I. Kegel, R. Paniago and J. Peisl, J. Phys. D: Appl. Phys. 32, A202 (1999).

    Article  Google Scholar 

  7. G. Carotenuto, B. Martorana, P. Perlo, L. Nicolais, J. Mater. Chem. 13, 2927 (2003); F. Antolini, M.Pentimalli, T. Di Luccio, R. Terzi, M. Schioppa, M. Re, M. Marenghi, L. Tapfer, Mater. Lett. 59, 3181 (2005); M. Pentimalli, F. Antolini, E. M. Bauer, D. Capitani, T. Di Luccio, S. Viel, Mater. Lett. 60, 2657 (2006).

    Article  CAS  Google Scholar 

  8. T. Di Luccio, B. Nickel, F. Antolini, M. Pentimalli, L. Tapfer, Mater. Res. Soc. Symp. Proc. 847, EE13.22.1 (2005).

    Google Scholar 

  9. T. Di Luccio, A. M. Laera, L. Tapfer, S. Kempter, R. Kraus, B. Nickel, J. Phys. Chem. B 110, 12603 (2006).10.1021/jp061003m

    Article  Google Scholar 

  10. T. Di Luccio, E. Piscopiello, A. M. Laera, M. Vittori Antisari, Mat. Sci. Eng. C 27, 1372 (2007).

    Article  Google Scholar 

  11. L. G. Parratt, Phys. Rev. 95, 359 (1954).10.1103/PhysRev.95.359

    Article  Google Scholar 

  12. M. B. Hochrein, C. Reich, B. Krause, J. O. Rädler and B. Nickel, Langmuir 22, 538 (2006).10.1021/la051820y

    Article  CAS  Google Scholar 

  13. B. L. Henke, E. M. Gullikson and J. C. Davis, Atomic and Nuclear Data Tables 54, 181 (1993).10.1006/adnd.1993.1013

    Article  CAS  Google Scholar 

  14. L. Spanhel, M. Haase, H. Weller, and A. Henglein, J. Am. Chem. Soc. 109, 5649 (1987); J. W. M. Chon, M. Gu, C. Bullen, P. Mulvaney, Appl. Phys. Lett. 84, 4472 (2004); S. Santhi, E. Bernstein, F. Paille, J. Lumin. 117, 101 (2006).

    Article  CAS  Google Scholar 

  15. C. Petit, P. Lixon, and M. P. Pileni, J. Phys. Chem. 94, 1598 (1990); H. Weller, Angew. Chem. Int. Ed Engl. 32, 41(1993); N. Pinna, K. Weiss, J. Urban, and M. P. Pileni, Adv. Mat. 13, 261 (2001).10.1021/j100367a069

    Article  CAS  Google Scholar 

  16. R. Lazzari “IsGISAXS: a program for Grazing-Incidence Small Angle X-Ray Scattering analysis of supported islands”, Appl. Cryst. 35, 406 (2002).10.1107/S0021889802006088

    Article  CAS  Google Scholar 

  17. A. Guinier and G. Fournet, Small-Angle scattering of X-rays (John Wiley & Sons, New York, 1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiziana, D.L., Carbone, D., Anna, M.L. et al. In-situ GISAXS on Nanocomposite Films of CdS Nanoparticles and Polymers. MRS Online Proceedings Library 1027, 502 (2007). https://doi.org/10.1557/PROC-1027-D05-02

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1027-D05-02

Navigation