Skip to main content

Optical Silver Superlens Imaging Below the Diffraction Limit


Conventional optical imaging systems cannot resolve the features smaller than approximately half the size of the working wavelength, called the diffraction limit. The superlens theory predicts that a flat lens made of an ideal material with negative permittivity and/or permeability is able to resolve features much smaller than working wavelength through the restoration of evanescent waves[1]. We experimentally demonstrated the superlens concept for the first time using a thin silver slab in a quasi-static regime; a 60nm half-pitch object was imaged with λ=365nm illumination wavelength, λ/6 resolution[3], and the imaging of 50nm half-pitch object under the same light source, λ/7, was also reported[4]. Here, we present mainly experimental studies of near-field optical superlens imaging.

This is a preview of subscription content, access via your institution.


  1. Pendry J B 2000 Negative refraction makes a perfect lens Phys. Rev. Lett. 85 3966–9

    CAS  Article  Google Scholar 

  2. Veselago V G 1968 Electrodynamics of substances with simultaneously negative values of sigma and mu Sov. Phys.-Usp 10 509–14

    Article  Google Scholar 

  3. Fang N, Lee H, Sun C and Zhang X 2005 Sub-diffraction-limited optical imaging with a silver superlens Science 308 534–7

    CAS  Article  Google Scholar 

  4. Lee H, Xiong Y, Fang N, Srituravanich W, Durant S, Ambati M, Sun C and Zhang X 2005 Realization of optical superlens imaging below the diffraction limit New Journal of Physics 7 255

    Article  Google Scholar 

  5. Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N and Zhang X 2004 Terahertz magnetic response from artificial materials Science 303 1494–6

    CAS  Article  Google Scholar 

  6. Linden S, Enkrich C, Wegener M, Zhou J F, Koschny T and Soukoulis C M 2004 Magnetic response of metamaterials at 100 terahertz Science 306 1351–3

    CAS  Article  Google Scholar 

  7. Smith D R, Schurig D, Rosenbluth M, Schultz S, Ramakrishna S A and Pendry J B 2003 Limitations on sub-diffraction imaging with a negative refractive index slab Appl. Phys. Lett. 82 1506–8

    CAS  Article  Google Scholar 

  8. Fang N and Zhang X 2003 Imaging properties of a metamaterial superlens Appl. Phys. Lett. 82 161–3

    CAS  Article  Google Scholar 

  9. Raether H 1988 Surface-plasmons on smooth and rough surfaces and on gratings Springer Tracts Mod. Phys. 111 1–133

    Article  Google Scholar 

  10. Liu Z W, Fang N, Yen T J and Zhang X 2003 Rapid growth of evanescent wave by a silver superlens Appl. Phys. Lett. 83 5184–6

    CAS  Article  Google Scholar 

  11. Melville D O S and Blaikie R J 2005 Super-resolution imaging through a planar silver layer Opt. Express 13 2127–2134

    CAS  Article  Google Scholar 

  12. Fischer U C and Zingsheim H P 1981 Sub-microscopic pattern replication with visible-light J. Vac. Sci. Technol. 19 881–5

    CAS  Article  Google Scholar 

  13. Betzig E, Trautman J K, Harris T D, Weiner J S and Kostelak R L 1991 Breaking the diffraction barrier-optical microscopy on a nanometric scale Science 251 1468–70

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, H., Xiong, Y., Fang, N. et al. Optical Silver Superlens Imaging Below the Diffraction Limit. MRS Online Proceedings Library 919, 401 (2006).

Download citation

  • Published:

  • DOI: