Fabrication of Hollow Silica Aerogel Spheres for Direct Drive Inertial Confinement Fusion (ICF) Experiments


Hollow foam spheres are needed for laser fusion experiments on the OMEGA laser facility at the University of Rochester as part of the demonstration of the feasibility of inertial confinement fusion. Previously polymer based foam and aerogel shells have been produced using resorcinol-formaldehyde (R/F) and divinylbenzene (DVB). In this paper we discuss the development of silica aerogel (SAG) shells. SAG may have the increased robustness, which is important in processing these laser targets. SAG shells were fabricated by the microencapsulation method using a triple orifice droplet generator. This technique allows for precise control of the shell diameter and wall thickness. Reduction of the aerogel gelation time is crucial to fabrication of intact shells with high yield. In addition, the proper choice of the components of the different phases of the microencapsulation process is essential for fabrication of intact SAG shells with proper sphericity and wall uniformity. The density of shells fabricated is approximately 100 mg/cc and the diameter ranges from 700–2000 μm, with a wall thickness of 50–200 μm. Development of a full density permeation barrier for retention of the fusion fuel will also be discussed.

This is a preview of subscription content, access via your institution.


  1. 1

    S. Skupsky, R. Betti, T.B.J. Collins, V.N. Goncharov, J.A. Marozas, P.W. McKenty, P.B. Radha, T.R. Boehly, J.P. Knauer, F.J. Marshall, D.R. Harding, J.D. Kilkenny, D.D. Meyerhofer, T.C. Sangster, R.L. McCrory, Third International Conference on Inertial Fusion Sciences and Applications (IFSA 2003). American Nuclear Soc. Inc. pp.61–64. La Grange Park, IL, USA (2004).

  2. 2

    S.M. Lambert, G.E. Overturf III, G. Wilemski, S.A. Letts, D. Schroen-Carey, R.C. Cook, J. Appl. Polymer Sci. 65, 2111 (1997).

    CAS  Article  Google Scholar 

  3. 3

    A. Nikroo, D. Czechowicz, R. Paguio, A.L. Greenwood, M. Takagi, Fusion Technology 45, 84 (2004).

    CAS  Article  Google Scholar 

  4. 4

    R.R. Paguio, A. Nikroo, M. Takagi, O. Acenas, submitted to Journal of Applied Polymer Sciences (2005).

  5. 5

    J.F. Hund, R.R. Paguio, C.A. Frederick, A. Nikroo, M. Thi, To be published in Fusion Technology, (2005).

  6. 6

    C.J. Brinker and G.W. Scherer, Sol-Gel Science, p. 116, Academic Press, San Diego (1990).

  7. 7

    J. Mazdivasni, private communication, (2002).

  8. 8

    B.W. McQuillian, A. Nikroo, D.A. Steinman, F.H. Elsner, D.G. Czechowicz, M.L. Hoppe, M. Sixtus, W.J. Miller, Fusion Technol. 31, 381 (1997).

    Article  Google Scholar 

  9. 9

    M. Takagi, R. Cook, R. Stephens, J. Gibson, S. Paguio, Fusion Technol. 38 (1), 46 (2001).

    Article  Google Scholar 

  10. 10

    R.R. Paguio, C.A. Frederick, J.F. Hund, D.G. Czechowicz, A. Nikroo, M. Takagi, O. Acenas, M. Thi, Future paper to be published in the Symposium of Fusion Energy (SOFE) 2005, Knoxville, TN, (2005).

  11. 11

    N.K. Kim, K.Kim, D.A. Payne, and R.S. Upadhye, J. Vac. Sci. Technol. A. 7, 1181 (1989).

    CAS  Article  Google Scholar 

  12. 12

    J.F. Poco, P.R. Coronado, R.W. Pekala, and L.W. Hrubesh, Mat. Res. Soc. Symp. Proc. 431, 297 (1996).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Reny R. Paguio.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Paguio, R.R., Nikroo, A., Hund, J.F. et al. Fabrication of Hollow Silica Aerogel Spheres for Direct Drive Inertial Confinement Fusion (ICF) Experiments. MRS Online Proceedings Library 901, 523 (2005). https://doi.org/10.1557/PROC-0901-Ra05-23-Rb05-23

Download citation