Skip to main content
Log in

Electrodeposited Cu2Sb as anode material for 3-dimensional Li-ion microbatteries

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

An increasing demand on high energy and power systems has arisen not only with the development of electric vehicle (EV), hybrid electric vehicle (HEV), telecom, and mobile technologies, but also for specific applications such as powering of microelectronic systems. To power those microdevices, an extra variable is added to the equation: a limited footprint area. Three-dimensional (3D) microbatteries are a solution to combine high-density energy and power. In this work, we present the formation of Cu2Sb onto three-dimensionally architectured arrays of Cu current collectors. Sb electrodeposition conditions and annealing post treatment are discussed in light of their influence on the morphology and battery performances. An increase of cycling stability was observed when Sb was fully alloyed with the Cu current collector. A subsequent separator layer was added to the 3D electrode when optimized. Equivalent capacity values are measured for at least 20 cycles. Work is currently devoted to the identification of the causes of capacity fading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Long, B. Dunn, D.R. Rolison, H.S. White: Three-dimensional battery architectures. Chem. Rev.1044463 (2004)

    Article  CAS  Google Scholar 

  2. H-S. Min, B.Y. Park, L. Taherabadi, C. Wang, Y. Yeh, R. Zaouk, M.J. Madou, B. Dunn: Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery. J. Power Sources178795 (2008)

    Article  CAS  Google Scholar 

  3. D. Golodnitsky, V. Yufit, M. Nathan, I. Shechtman, T. Ripenbein, E. Strauss, S. Menkin, E. Peled: Advanced materials for the 3d microbattery. J. Power Sources153281 (2006)

    Article  CAS  Google Scholar 

  4. P.L. Taberna, S. Mitra, P. Poizot, P. Simon, J.M. Tarascon: High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater.5567 (2006)

    Article  CAS  Google Scholar 

  5. R. Nesper: Structure and chemical bonding in zintl-phases containing lithium. Prog. Solid State Chem.201 (1990)

    Article  CAS  Google Scholar 

  6. L.Y. Beaulieu, K.W. Eberman, R.L. Turner, L.J. Krause, J.R. Dahn: Colossal reversible volume changes in lithium alloys. Electrochem. Solid-State Lett.4A137 (2001)

    Article  CAS  Google Scholar 

  7. J.O. Besenhard, J. Yang, M. Winter: Will advanced lithium-alloy anodes have a chance in lithium-ion batteries≟ J. Power Sources6887 (1997)

    Article  CAS  Google Scholar 

  8. A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater.4366 (2005)

    Article  CAS  Google Scholar 

  9. M.M. Thackeray, J.T. Vaughey, C.S. Johnson, A.J. Kropf, R. Benedek, L.M.L. Fransson, K. Edstrom: Structural considerations of intermetallic electrodes for lithium batteries. J. Power Sources113124 (2003)

    Article  CAS  Google Scholar 

  10. K.D. Kepler, J.T. Vaughey, M.M. Thackeray: LixCu6Sn5 (0 < x < 13): An intermetallic insertion electrode for rechargeable lithium batteries. Electrochem. Solid-State Lett.2307 (1999)

    Article  CAS  Google Scholar 

  11. H. Bryngelsson, J. Eskhult, L. Nyholm, K. Edström: Thin films of Cu2Sb and Cu9Sb2 as anode materials in Li-ion batteries. Electrochim. Acta537226 (2008)

    Article  CAS  Google Scholar 

  12. M. Nathan, D. Golodnitsky, V. Yufit, E. Strauss, T. Ripenbein, I. Shechtman, S. Menkin, E. Peled: Three-dimensional thin-film Li-ion microbatteries for autonomous mems. J. Microelectromech. Syst.14879 (2005)

    Article  CAS  Google Scholar 

  13. J.Y. Song, Y.Y. Wang, C.C. Wan: Review of gel-type polymer electrolytes for lithium-ion batteries. J. Power Sources77183 (1999)

    Article  CAS  Google Scholar 

  14. L.M.L. Fransson, J.T. Vaughey, R. Benedek, K. Edstrom, J.O. Thomas, M.M. Thackeray: Phase transitions in lithiated Cu2Sb anodes for lithium batteries: An in situ x-ray diffraction study. Electrochem. Commun.3317 (2001)

    Article  CAS  Google Scholar 

  15. M. Morcrette, D. Larcher, J.M. Tarascon, K. Edstrom, J.T. Vaughey, M.M. Thackeray: Influence of electrode microstructure on the reactivity of Cu2Sb with lithium. Electrochim. Acta525339 (2007)

    Article  CAS  Google Scholar 

  16. S. Matsuno, M. Noji, T. Kashiwagi, M. Nakayama, M. Wakihar: Construction of the ternary phase diagram for the Li-Cu-Sb system as the anode material for a lithium ion battery. J. Phys. Chem. C1117548 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perre, E., Taberna, P.L., Mazouzi, D. et al. Electrodeposited Cu2Sb as anode material for 3-dimensional Li-ion microbatteries. Journal of Materials Research 25, 1485–1491 (2010). https://doi.org/10.1557/JMR.2010.0190

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0190

Navigation