Skip to main content
Log in

Temperature dependence of the indentation size effect

  • Materials Communication
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The influence of temperature on the indentation size effect is explored experimentally. Copper is indented on a custom-built high-temperature nanoindenter at temperatures between ambient and 200 °C, in an inert atmosphere that precludes oxidation. Over this range of temperatures, the size effect is reduced considerably, suggesting that thermal activation plays a major role in determining the length scale for plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. B. Backes, K. Durst, M. Goken: Determination of plastic properties of polycrystalline metallic materials by nanoindentation: Experiments and finite element simulations. Philos. Mag.865541 (2006)

    CAS  Google Scholar 

  2. K. Durst, B. Backes, O. Franke, M. Goken: Indentation size effect in metallic materials: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater.542547 (2006)

    CAS  Google Scholar 

  3. K. Durst, B. Backes, M. Goken: Indentation size effect in metallic materials: Correcting for the size of the plastic zone. Scr. Mater.521093 (2005)

    CAS  Google Scholar 

  4. K. Durst, O. Franke, A. Bohner, M. Goken: Indentation size effect in Ni-Fe solid solutions. Acta Mater.556825 (2007)

    CAS  Google Scholar 

  5. A.A. Elmustafa, J.A. Eastman, M.N. Rittner, J.R. Weertman, D.S. Stone: Indentation size effect: Large grained aluminum versus nanocrystalline aluminum-zirconium alloys. Scr. Mater.43951 (2000)

    CAS  Google Scholar 

  6. A.A. Elmustafa, D.S. Stone: Indentation size effect in polycrystalline F.C.C. metals. Acta Mater.503641 (2002)

    CAS  Google Scholar 

  7. W.D. Nix, H. Gao: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids46411 (1998)

    CAS  Google Scholar 

  8. M. Rester, C. Motz, R. Pippan: Indentation across size scales—A survey of indentation-induced plastic zones in copper 1 1 1 single crystals. Scr. Mater.59742 (2008)

    CAS  Google Scholar 

  9. Y. Huang, H. Gao, W.D. Nix, J.W. Hutchinson: Mechanism-based strain gradient plasticity—II. Analysis. J. Mech. Phys. Solids4899 (2000)

    Google Scholar 

  10. N.A. Fleck, J.W. Hutchinson: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids492245 (2001)

    Google Scholar 

  11. N.A. Fleck, J.W. Hutchison: Strain gradient plasticity. Adv. Appl. Mech.33295 (1997)

    Google Scholar 

  12. N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson: Strain gradient plasticity: Theory and experiment. Acta Metall. Mater.42475 (1994)

    CAS  Google Scholar 

  13. H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson: Mechanism-based strain gradient plasticity—I. Theory. J. Mech. Phys. Solids471239 (1999)

    Google Scholar 

  14. W.C. Oliver, G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res.71564 (1992)

    CAS  Google Scholar 

  15. M.F. Doerner, W.D. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res.1601 (1986)

    Article  Google Scholar 

  16. B. Backes, Y.Y. Huang, M. Göken, K. Durst: The correlation between the internal material length scale and the microstructure in nanoindentation experiments and simulations using the conventional mechanism-based strain gradient plasticity theory. J. Mater. Res.241197 (2009)

    CAS  Google Scholar 

  17. A.C. Lund, A.M. Hodge, C.A. Schuh: Incipient plasticity during nanoindentation at elevated temperatures. Appl. Phys. Lett.851362 (2004)

    CAS  Google Scholar 

  18. J.K. Mason, A.C. Lund, C.A. Schuh: Determining the activation energy and volume for the onset of plasticity during nanoindentation. Phys. Rev. B73054102 (2006)

    Google Scholar 

  19. C.A. Schuh, C.E. Packard, A.C. Lund: Nanoindentation and contact-mode imaging at high temperatures. J. Mater. Res.21725 (2006)

    CAS  Google Scholar 

  20. C.E. Packard Nanomechanical studies of metallic glasses at ambient and elevated temperatures. Ph.D. Thesis Massachusetts Institute of Technology, Cambridge, MA 2008

    Google Scholar 

  21. H.J. Frost, M.F. Ashby Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics 1st ed (Pergamon Press, Oxford, UK 1982)

    Google Scholar 

  22. P. Ludwik: About the change in internal friction with temperature. Z. Phys. Chem.91232 (1916)

    CAS  Google Scholar 

  23. J. Engl, G. Heidtkamp: The temperature dependence of the cone indentation hardness in metals. Z. Phys.9530 (1935)

    CAS  Google Scholar 

  24. J.H. Westbrook: Temperature dependence of the hardness of pure metals. Trans. Am. Soc. Met.45221 (1953)

    Google Scholar 

  25. A.G. Atkins, D. Tabor: Plastic indentation in metals with cones. J. Mech. Phys. Solids13149 (1965)

    Google Scholar 

  26. M.R. Staker, D.L. Holt: The dislocation cell size and dislocation density in copper deformed at temperatures between 25 and 700 °C. Acta Metall.20569 (1972)

    CAS  Google Scholar 

  27. K.A. Nibur, F. Akasheh, D.F. Bahr: Analysis of dislocation mechanisms around indentations through slip step observations. J. Mater. Sci.42889 (2007)

    CAS  Google Scholar 

  28. K.A. Nibur, D.F. Bahr: Identifying slip systems around indentations in FCC metals. Scr. Mater.491055 (2003)

    CAS  Google Scholar 

  29. N. Christodoulou, J.J. Jonas: Work hardening and rate sensitivity material coefficients for OFHC Cu and 99.99% A1. Acta Metall.321655 (1984)

    CAS  Google Scholar 

  30. J.Y. Shu, N.A. Fleck: The prediction of a size effect in microindentation. Int. J. Solids Struct.351363 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Schuh.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franke, O., Trenkle, J.C. & Schuh, C.A. Temperature dependence of the indentation size effect. Journal of Materials Research 25, 1225–1229 (2010). https://doi.org/10.1557/JMR.2010.0159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0159

Navigation