Skip to main content
Log in

Effect of electrospinning parameters on the characterization of PLA/HNT nanocomposite fibers

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Halloysite nanotubes (HNT) reinforced polylactic acid (PLA) nanocomposite fibers were produced using an electrospinning approach for biomedical applications. The PLA/HNT nanocomposite fibers were characterized using x-ray diffraction (XRD) and scanning electron microscopy (SEM). The various factors such as type of solvent, solution concentration, HNT loading and feed rate, affecting the electrospinning process, and the morphology of the nanofibers were investigated, and the optimum values for these parameters are suggested. The results indicated that the addition of dimethylformamide (DMF) to chloroform facilitated the electrospinning process because of the improvement in electrical conductivity and viscosity of the solution. Nanometer-sized fibers were obtained by the addition of HNT to PLA. HNT loadings had a significant effect on the morphology of the nanofibers. Bead-free fibers were produced at feed rates between 1 and 4 mL/h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.S. Ray, M. Okamoto Biodegradable polylactide and its nanocomposites: Opening a new dimension for plastics and composites. Macromol. Rapid Commun. 24, 815 (2003)

    CAS  Google Scholar 

  2. S.S. Ray, M. Bousmina Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Prog. Mater. Sci. 50, 962 (2005)

    CAS  Google Scholar 

  3. R. Auras, B. Harte, S. Selke An overview of polylactides as packaging materials. Macromol. Biosci. 4, 835 (2004)

    CAS  Google Scholar 

  4. B. Gupta, N. Revagade, J. Hilborn Poly (lactic acid) fiber: An overview. Prog. Polym. Sci. 32, 455 (2007)

    CAS  Google Scholar 

  5. I. Kyrikou, D. Briassoulis Biodegradation of agricultural plastic films. A critical review. Rev. J. Polym. Environ. 15, 125 (2007)

    CAS  Google Scholar 

  6. C. Kriegel, A. Arrechi, K. Kit, D.J. McClements, J. Weiss Fabrication, functionalization, application of electrospun biopolymer nanofibers. Crit. Rev. Food Sci. Nutr. 48, 775 (2008)

    CAS  Google Scholar 

  7. A. Steinbuchel, R.H. Marchessault Biopolymers for Medical and Pharmaceutical Applications Vol. 1, 1st ed. (Wiley-VCH Verlag, Germany 2005) 183

    Google Scholar 

  8. K.A. Athanasiou, C.M. Agrawal, F.A. Barber, S.S. Burkhart Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy 14, 726 (1998)

    CAS  Google Scholar 

  9. E. Joussein, S. Petit, J. Churchman, B. Theng, D. Righi, B. Delvaux Halloysite clay minerals—A review. Clay Miner. 40, 383 (2005)

    CAS  Google Scholar 

  10. S. Antill Halloysite: A low-cost alternative. Aust. J. Chem. 56, 723 (2003)

    CAS  Google Scholar 

  11. M.L. Du, B.H. Guo, M.X. Liu, D.M. Jia Thermal decomposition and oxidation ageing behavior of polypropylene/halloysite nanotube nanocomposites. Polym. Polym. Compos. 15, 321 (2007)

    CAS  Google Scholar 

  12. Y.P. Ye, H.B. Chen, J.S. Wu, L. Ye High impact strength epoxy nanocomposites with natural nanotubes. Polymer (Guildf.). 48, 6426 (2007)

    CAS  Google Scholar 

  13. H. Ismail, P. Pasbakhsh, M.N. Fauzi, A. Ahmad Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites. Polym. Test. 27, 841 (2008)

    CAS  Google Scholar 

  14. M.L. Du, B.C. Guo, D.M. Jia Thermal stability and flame retardant effects of halloysite nanotubes on poly propylene. Eur. Polym. J. 42, 1362 (2006)

    CAS  Google Scholar 

  15. G.V. Nalinkanth, M. Dmitriy, T. Vladimir, R.P. Ronald, M.L. Yuri Organized shells on clay nanotubes for controlled release of macromolecules. Macromol. Rapid Commun. 30, 99 (2009)

    Google Scholar 

  16. S.R. Levis, P.B. Deasy Characterization of halloysite for use as a microtubular drug delivery system. Int. J. Pharm. 243, 125 (2002)

    CAS  Google Scholar 

  17. D.G. Shchukin, G.B. Sukhorukov, R.R. Price, Y.M. Lvov Halloysite nanotubes as biomimetic nanoreactors. Small 1, 510 (2005)

    CAS  Google Scholar 

  18. M.H. Shamsi, K.E. Geckeler The first biopolymer-wrapped non-carbon nanotubes. Nanotechnology 19, 075604 (2008)

    Google Scholar 

  19. J. Xie, X. Li, Y. Xia Putting electrospun nanofibers to work for biomedical research. Macromol. Rapid Commun. 29, 1775 (2008)

    CAS  Google Scholar 

  20. J.D. Schiffman, C.L. Schauer A review: Electrospinning of biopolymer nanofibers and their applications. Polym. Rev. 48, 317 (2008)

    CAS  Google Scholar 

  21. T.J. Sill, von H.A. Recum Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 29, 1989 (2008)

    CAS  Google Scholar 

  22. H. Fong, W. Liu, C. Wang, R.A. Vaia Generation of electrospun fibers of nylon 6 and nylon 6-montmorillonite nanocomposite. Polymer (Guildf.) 43, 775 (2002)

    CAS  Google Scholar 

  23. L. Li, L.M. Bellan, H.G. Craighead, M.W. Frey Formation and properties of nylon-6 and nylon-6/montmorillonite composite nanofibers. Polymer (Guildf.) 47, 6208 (2006)

    CAS  Google Scholar 

  24. Y. Cai, Q. Li, Q. Wei, Y. Wu, S. Lei, Y. Hu Structures, thermal stability, and crystalline properties of polyamide 6/organic-modified Fe-montmorillonite composite nanofibers by electrospinning. J. Mater. Sci. 43, 6132 (2008)

    CAS  Google Scholar 

  25. Q. Li, Q. Wei, N. Wu, Y. Cai, W. Gao Structural characterization and dynamic water adsorption of electrospun polyamide 6/montmorillonite nanofibers. J. Appl. Polym. Sci. 107, 3535 (2008)

    CAS  Google Scholar 

  26. M. Wang, A.J. Hsieh, G.C. Rutledge Electrospinning of poly (MMA-co-MAA) copolymers and their layered silicate nanocomposites for improved thermal properties. Polymer (Guildf.) 46, 3407 (2005)

    CAS  Google Scholar 

  27. H.W. Lee, M.R. Karim, H.M. Ji, J.H. Choi, H.D. Ghim, S.M. Park, W. Oh, J.H. Yeum Electrospinning fabrication and characterization of poly (vinyl alcohol)/montmorillonite nanofiber mats. J. Appl. Polym. Sci. 113, 1860 (2009)

    CAS  Google Scholar 

  28. H.M. Ji, H.W. Lee, M.R. Karim, I.W. Cheong, E.A. Bae, T.H. Kim, M.I. Islam, B.C. Ji, J.Y. Yeum Electrospinning and characterization of medium molecular weight poly(vinyl alcohol)/high molecular weight poly(vinyl alcohol) /montmorillonite nanofibers. Colloid Polym. Sci. 287, 751 (2009)

    CAS  Google Scholar 

  29. J.H. Hong, E.H. Jeong, H.S. Lee, D.H. Baik, S.W. See, J.H. Youk Electrospinning of polyurethane/ organically modified montmorillonite nanocomposites. J. Polym. Sci. Part B: Polym. Phys. 43, 3171 (2005)

    CAS  Google Scholar 

  30. Y.H. Lee, J.H. Lee, I. An, C. Kim, D.S. Lee, Y.K. Lee, J. Nam Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds. Biomaterials 26, 3165 (2005)

    CAS  Google Scholar 

  31. S.I. Marras, K.P. Kladi, I. Tsivintzelis, I. Zuburtikudis, C. Panayiotou Biodegradable polymer nanocomposites: The role of nanoclays on the thermomechanical characteristics and the electrospun fibrous structure. Acta Biomater. 4, 756 (2008)

    CAS  Google Scholar 

  32. S.I. Marras, I. Zuburtikudis, C. Panayiotou Nanostructure vs. microstructure: Morphological and thermo-mechanical characterization of poly (l-lactic acid)/layered silicate hybrids. Eur. Polym. J. 43, 2191 (2007)

    CAS  Google Scholar 

  33. H.J. Zhou, K.W. Kim, E. Giannelis, Y.L. Joo Nanofibers from poly (L-lactic) acid nanocomposites: Effect of nanoclays on molecular structures Polymeric Nanofibers Book Series ACS Symposium Series Vol. 918 (American Chemical Society, Washington, DC 2006) 217

    CAS  Google Scholar 

  34. S. Pilla, S. Gong, O’E. Neill, L. Yang, R.M. Rowell Polylactide-recycled wood fiber composites. J. Appl. Polym. Sci. 111, 37 (2009)

    CAS  Google Scholar 

  35. S.D. McCullen, K.L. Stano, D.R. Stevens, W.A. Roberts, N.A Monteiro-Riviere, L.I. Clarke, R.E. Gorga Development, optimization, and characterization of electrospun poly (lactic acid) nanofibers containing multi-walled carbon nanotubes. J. Appl. Polym. Sci. 105, 1668 (2007)

    CAS  Google Scholar 

  36. S. Ramakrishina, K. Fujihara, W. Teo, T. Lim, Z. Ma An Introduction to Electrospinning and NanoFibers 1st ed. (World Scientific, Singapore 2005) 98–102

    Google Scholar 

  37. S. Mazinani, A. Ajji, C. Dubois Morphology, structure and properties of conductive PS/CNT nanocomposite electrospun mat. Polymer (Guildf.) 50, 3329 (2009)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Touny, A.H., Joseph, L.G., Jones, A.D. et al. Effect of electrospinning parameters on the characterization of PLA/HNT nanocomposite fibers. Journal of Materials Research 25, 857–865 (2010). https://doi.org/10.1557/JMR.2010.0122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0122

Navigation