Skip to main content
Log in

Enhancing the fatigue property of rolled AZ31 magnesium alloy by controlling {10-12} twinning-detwinning characteristics

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

An improvement of the fatigue resistance of rolled AZ31 magnesium alloy was attempted by reducing the tensile mean stress developed during fatigue deformation, which was achievable by tailoring the {10-12} twinning-detwinning characteristics of the material through the precompression process. The modification of the {10-12} twinning-detwinning characteristics made it possible to control the plastic deformation mechanisms activated during fatigue deformation so that the imposed tensile strain could be fully accommodated by detwinning alone, which led to a significant reduction of tensile flow stress, finally resulting in the reduction of mean stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.R. Barnett Twinning and the ductility of magnesium alloys: Part I: “Tension” twins. Mater. Sci. Eng., A 464, 1 (2007)

    Article  Google Scholar 

  2. L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, S. Godet Influence of {10-12} extension twinning on the flow behavior of AZ31 Mg alloy. Mater. Sci. Eng., A 445–446, 302 (2007)

    Article  Google Scholar 

  3. Y.V.R. PrasadK., K.P. Rao Effect of crystallographic texture on the kinetics of hot deformation of rolled Mg–3Al–1Zn alloy plate. Mater. Sci. Eng., A 432, 170 (2006)

    Article  Google Scholar 

  4. Y. Chino, K. Kimura, M. Mabuchi Deformation characteristics at room temperature under biaxial tensile stress in textured AZ31 Mg alloy sheets. Acta Mater. 57, 1476 (2009)

    Article  CAS  Google Scholar 

  5. S.R. Agnew, Ö. Duygulu Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int. J. Plast. 21, 1161 (2005)

    Article  CAS  Google Scholar 

  6. C.H. Cáceres, T. Sumitomo, M. Veidt Pseudoelastic behaviour of cast magnesium AZ91 alloy under cyclic loading–unloading. Acta Mater. 51, 6211 (2003)

    Article  Google Scholar 

  7. M.D. Nave, M.R. Barnett Microstructures and textures of pure magnesium deformed in plane-strain compression. Scr. Mater. 51, 881 (2004)

    Article  CAS  Google Scholar 

  8. S.H. Choi, E.J. Shin, B.S. Seong Simulation of deformation twins and deformation texture in an AZ31 Mg alloy under uniaxial compression. Acta Mater. 55, 4181 (2007)

    Article  CAS  Google Scholar 

  9. S.H. Park, S.G. Hong, C.S. Lee Activation mode dependent {10-12} twinning characteristics in a polycrystalline magnesium alloy. Scr. Mater. 62, 202 (2010)

    Article  CAS  Google Scholar 

  10. S. Kleiner, P.J. Uggowitzer Mechanical anisotropy of extruded Mg–6% Al–1% Zn alloy. Mater. Sci. Eng., A 379, 258 (2004)

    Article  Google Scholar 

  11. Y.N. Wang, J.C. Huang The role of twinning and untwinning in yielding behavior in hot-extruded Mg–Al–Zn alloy. Acta Mater. 55, 897 (2007)

    Article  CAS  Google Scholar 

  12. X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, R.H. Wagoner Hardening evolution of AZ31B Mg sheet. Int. J. Plast. 23, 44 (2007)

    Article  CAS  Google Scholar 

  13. G. Proust, Tomé C.N., A. Jain, S.R. Agnew Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31. Int. J. Plast. 25, 861 (2009)

    Article  CAS  Google Scholar 

  14. S.M. Yin, H.J. Yang, S.X. Li, S.D. Wu, F. Yang Cyclic deformation behavior of as-extruded Mg–3%Al–1%Zn. Scr. Mater. 58, 751 (2008)

    Article  CAS  Google Scholar 

  15. L. Wu, A. Jain, D.W. Brown, G.M. Stoica, S.R. Agnew, B. Clausen, D.E. Fielden, P.K. Liaw Twinning–detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A. Acta Mater. 56, 688 (2008)

    Article  CAS  Google Scholar 

  16. L. Wu, S.R. Agnew, D.W. Brown, G.M. Stoica, B. Clausen, A. Jain, D.E. Fielden, P.K. Liaw Internal stress relaxation and load redistribution during the twinning–detwinning-dominated cyclic deformation of a wrought magnesium alloy, ZK60A. Acta Mater. 56, 3699 (2008)

    Article  CAS  Google Scholar 

  17. P.R.V. Evans, N.B. Owen, L.N. McCartney Mean stress effects on fatigue crack growth and failure in a rail steel. Eng. Fract. Mech. 6, 183 (1974)

    Article  CAS  Google Scholar 

  18. Y. Bao, R. Treitler Ductile crack formation on notched Al2024-T351 bars under compression–tension loading. Mater. Sci. Eng., A 384, 385 (2004)

    Article  Google Scholar 

  19. S.M. Yin, F. Yang, X.M. Yang, S.D. Wu, S.X. Li, G.Y. Li The role of twinning–detwinning on fatigue fracture morphology of Mg–3%Al–1%Zn alloy. Mater. Sci. Eng., A 494, 397 (2008)

    Article  Google Scholar 

  20. R.W. Landgraf Achievement of high fatigue resistance in metals and alloys. ASTM Spec. Tech. Publ. 467, 3 (1970)

    Google Scholar 

  21. S. Suresh Fatigue of Materials (Cambridge University Press, Cambridge, UK 1998)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Gu Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, SG., Park, S.H. & Lee, C.S. Enhancing the fatigue property of rolled AZ31 magnesium alloy by controlling {10-12} twinning-detwinning characteristics. Journal of Materials Research 25, 784–792 (2010). https://doi.org/10.1557/JMR.2010.0094

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0094

Navigation