Skip to main content
Log in

Effects of prestrain on high temperature impact properties of 304L stainless steel

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effects of prestrain, strain rate, and temperature on the impact properties of 304L stainless steel are investigated using a compressive split-Hopkinson pressure bar. The impact tests are performed at strain rates ranging from 2000 to 6000 s−1 and temperatures of 300, 500, and 800 °C using 304L specimens with prestrains of 0.15 or 0.5. The results show that the flow stress, work-hardening rate, and strain rate sensitivity increase with increasing strain rate or decreasing temperature. As the prestrain increases, the flow stress and strain rate sensitivity increase, but the work-hardening rate decreases. The temperature sensitivity increases with an increasing strain rate, temperature, and prestrain. Overall, the effects of prestrain on the impact properties of the tested specimens dominate those of the strain rate or temperature, respectively. Finally, optical microscopy observations reveal that the specimens fracture primarily as the result of the formation of adiabatic shear bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.L. Semiatin, J.H. Holbrook Plastic flow phenomenology of 304L stainless steel. Metall. Trans. A 14, 1681 (1983)

    Google Scholar 

  2. S. Venugopal, S.L. Mannan, Y.V.R. PrasadK. Optimization of hot workability in stainless steel-type AISI 304L using processing maps. Metall. Trans. A 23, 3093 (1992)

    Google Scholar 

  3. D. Sundararaman, R. Divakar, V.S. Raghunathan Microstructural features of a type 304L stainless steel deformed at 1473 K in the strain rate interval 10−3 s−1 to 102 s–1. Scr. Metall. Mater. 28, 1077 (1993)

    CAS  Google Scholar 

  4. D. Peckner, I.M. Bernstein Handbook of Stainless Steels (McGraw-Hill, New York 1977)

    Google Scholar 

  5. R.A. Lula, J.G. Parr, A. Hanson Stainless Steel (American Society for Metals, Metals Park, OH 1986)

    Google Scholar 

  6. M.G. Stout, P.S. Follansbee Strain rate sensitivity, strain hardening, and yield behavior of 304L stainless steel. J. Eng. Mater. Technol. 108, 344 (1986)

    CAS  Google Scholar 

  7. D.P. Harvey JR., J.B. Terrell, T.S. Sudarshan, M.R. Louthan Jr. Participation of hydrogen in the impact behavior of 304L stainless steel. Eng. Fract. Mech. 46, 455 (1993)

    Google Scholar 

  8. B.K. Shah, A.K. Sinha, P.K. Rastogi, P.G. Kulkarni Effect of prior cold work on low temperature sensitization susceptibility of austenitic stainless steel AISI 304. Mater. Sci. Technol. 6, 157 (1990)

    CAS  Google Scholar 

  9. L.E. Murr, A. Advani, S. Shankar, D.G. Atteridge Effects of deformation (strain) and heat treatment on grain boundary sensitization and precipitation in austenitic stainless steels. Mater. Charact. 39, 575 (1997)

    Google Scholar 

  10. K.B.S. Rao, M. Valsan, R. Sandhya, S.L. Mannan, P. Rodriguez An assessment of cold work effects on strain-controlled low-cycle fatigue behavior of type 304 stainless steel. Metall. Mater. Trans. A 24, 913 (1993)

    Google Scholar 

  11. Y. Iino Effect of small and large amounts of prestrain at 295 K on tensile properties at 77 K of 304 stainless steel. JSME Int. J., Ser. A 35, 303 (1992)

    CAS  Google Scholar 

  12. K.P. Staudhammer, L.E. Murr The effect of prior deformation on the residual microstructure of explosively deformed stainless steel. Mater. Sci. Eng., A 44, 97 (1980)

    CAS  Google Scholar 

  13. C. Zener, J.H. Hollomon Effect of strain rate upon plastic flow of steel. J. Appl. Phys. 15, 22 (1944)

    Google Scholar 

  14. S.P. Timothy, I.M. Hutchings Initiation and growth of microfractures along adiabatic shear bands in Ti–6Al–4V. Mater. Sci. Technol. 1, 526 (1985)

    CAS  Google Scholar 

  15. W.S. Lee, C.F. Lin Adiabatic shear fracture of titanium alloy subjected to high strain and high temperature loadings. J. Phys. IV 7, (C3) 855 (1997)

    Google Scholar 

  16. S.P. Timothy, I.M. Hutchings Structure of adiabatic shear bands in a titanium alloy. Acta Metall. 33, 667 (1985)

    CAS  Google Scholar 

  17. S.P. Timothy Structure of adiabatic shear bands in metals: A critical review. Acta Metall. 35, 301 (1987)

    CAS  Google Scholar 

  18. A.J. Bedford, A.L. Wingrove, K.R.L. Thompson The phenomenon of adiabatic shear deformation. J. Aust. Inst. Met. 19, 61 (1974)

    CAS  Google Scholar 

  19. Q. Xue, M.A. Meyers, V.F. Nesterenko Self organization of shear bands in stainless steel. Mater. Sci. Eng., A 384, 35 (2004)

    Google Scholar 

  20. J.J. Mason, A.J. Rosakis, G. Ravichandran Full-field measurements of the dynamic deformation field around a growing adiabatic shear-band at the tip of a dynamically loaded crack or notch. J. Mech. Phys. Solids 42, 1679 (1994)

    CAS  Google Scholar 

  21. W.S. Lee, C.F. Lin Impact properties and microstructure evolution of 304L stainless steel. Mater. Sci. Eng., A 308, 124 (2001)

    Google Scholar 

  22. W.S. Lee, C.F. Lin Effects of prestrain and strain rate on the dynamic deformation characteristics of 304L stainless steel: Part I. Mechanical behavior. Mater. Sci. Technol. 18, 869 (2002)

    CAS  Google Scholar 

  23. W.S. Lee, C.F. Lin Effects of prestrain and strain rate on the dynamic deformation characteristics of 304L stainless steel: Part II. Microstructural study. Mater. Sci. Technol. 18, 877 (2002)

    CAS  Google Scholar 

  24. W.S. Lee, C.F. Lin Comparative study of impact response and microstructure of 304L stainless steel with and without prestrain. Metall. Trans. A 33, 2801 (2002)

    Google Scholar 

  25. U.S. Lindholm Some experiments with the split Hopkinson pressure bar. J. Mech. Phys. Solids 12, 317 (1964)

    Google Scholar 

  26. J.L. Chiddister, L.E. Malvern Compression-impact testing of aluminum at elevated temperatures. Exp. Mech. 3, 81 (1963)

    Google Scholar 

  27. W.S. Lee, C.F. Lin Plastic deformation and fracture behavior of Ti–6Al–4V alloy loaded with high strain rate under various temperatures. Mater. Sci. Eng., A 241, 48 (1998)

    Google Scholar 

  28. G.T. Gray III, W.R. Blumenthal, C.P. Trujillo, R.W. Carpenter Influence of temperature and strain rate on the mechanical behavior of Adiprene L-100. J. Phys. IV 7, (C3) 523 (1997)

    Google Scholar 

  29. R.R. Adharapurapu, F. Jiang, K.S. Vecchio, G.T. Gray III Response of NiTi shape memory alloy at high strain rate: A systematic investigation of temperature effects on tension-compression symmetry. Acta Mater. 54, 4609 (2006)

    CAS  Google Scholar 

  30. K. Ishikawa, H. Watanabe, T. Mukai High temperature compressive properties over a wide range of strain rates in an AZ31 magnesium alloy. J. Mater. Sci. 40, 1577 (2005)

    CAS  Google Scholar 

  31. S.S. Hecker, M.G. Stout, K.P. Staudhammer, J.L. Smith Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: Part I. Magnetic measurements and mechanical behavior. Metall. Trans. A 13, 619 (1982)

    CAS  Google Scholar 

  32. S.S.M. Tavares, D. Fruchart, S. Miraglia A magnetic study of the reversion of martensite a’ in a 304 stainless steel. J. Alloys Compd. 307, 311 (2000)

    CAS  Google Scholar 

  33. F.J. Zerilli, R.W. Armstrong Constitutive equation for hcp metals and high strength alloy steels High Strain Rate Effects on Polymer, Metal and Ceramic Matrix Composites and Other Advanced Materials AD Vol. 48 edited by Y.D.S. Rajapakse and J.R. Vinson (ASME, New York 1995) 121

    Google Scholar 

  34. M. Zhou, R.J. Clifton, A. Needleman Finite element simulations of dynamic shear localization in plate impact. J. Mech. Phys. Solids 42, 423 (1994)

    Google Scholar 

  35. V. Ramachandran, R.W. Armstrong, F.J. Zerilli Dislocation mechanics based constitutive equations for tungsten deformation and fracturing Tungsten and Tungsten Alloys-Recent Advances edited by A. Crowson and E.S. Chen (TMS, New Orleans, LA 1991) 111

    Google Scholar 

  36. D.J. Steinberg, S.G. Cohran, N.W. Guinan A constitutive model for metals applicable at high-strain rate. J. Appl. Phys. 51, 3 (1980)

    Google Scholar 

  37. G.R. Johnson, W.H. Cook Fracture characteristics of three metals subjected to various strains, strain rates, temperatures, and pressures. Eng. Fract. Mech. 21, 31 (1985)

    Google Scholar 

  38. J.D. Campbell Dynamic plasticity: Macroscopic and microscopic aspects. Mater. Sci. Eng. 12, 3 (1973)

    CAS  Google Scholar 

  39. J. Harding Effect of temperature and strain rate on strength and ductility of four alloy steels. Met. Technol. 4, 6 (1977)

    CAS  Google Scholar 

  40. R.J. Clifton Dynamic plasticity. J. Appl. Mech. 50, 941 (1983)

    Google Scholar 

  41. G. Regazzoni, U.F. Kocks, P.S. Follansbee Dislocation kinetics at high strain rates. Acta Metall. 35, 2865 (1987)

    CAS  Google Scholar 

  42. F.J. Zerilli, R.W. Armstrong Description of tantalum deformation behavior by dislocation mechanics based constitutive relations. Acta Metall. Mater. 40, 1803 (1992)

    CAS  Google Scholar 

  43. J.N. Johnson, D.L. Tonks Dynamic plasticity in transition from thermal activation to viscous drag Proceedings of the American Physical Society Topical Conference on Shock Compression of Condensed Matter edited by S.C. Schmit (Williamsburg, VA 1991) 371

    Google Scholar 

  44. P.S. Follansbee, G. Regazzni, U.F. Kocks The transition to drag-controlled deformation in copper at high strain rates Mechanical Properties at High Rates of Strain Vol. 70 edited by J. Hardening (Inst. Phys. Conf. Ser 1984) 77

    Google Scholar 

  45. C. Zener, J.H. Hollomon Effect of strain rate upon plastic flow of steel. J. Appl. Phys. 15, 22 (1944)

    Google Scholar 

  46. M.C. Mataya, V.E. Sackschewsky Effect of internal heating during hot compression on the stress–strain behavior of alloy 304L. Metall. Mater. Trans. A 25, 2737 (1994)

    Google Scholar 

  47. R. Kapoor, S. Nemat-Nasser Determination of temperature rise during high strain rate deformation. Mech. Mater. 27, 1 (1998)

    Google Scholar 

  48. W.G. Guo, S. Nemat-Nasser Flow stress of Nitronic-50 stainless steel over a wide range of strain rates and temperatures. Mech. Mater. 38, 1090 (2006)

    Google Scholar 

  49. R.C. Picu, A. Majorell Mechanical behavior of Ti–6Al–4V at high and moderate temperatures—Part II: Constitutive modeling. Mater. Sci. Eng., A 326, 306 (2002)

    Google Scholar 

  50. S.L. Semiatin, G.D. Lahoti Occurrence of shear bands in isothermal hot forging. Metall. Trans. A 13, 275 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woei-Shyan Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, WS., Lin-Shyan, CS., Chen-Shyan, TS. et al. Effects of prestrain on high temperature impact properties of 304L stainless steel. Journal of Materials Research 25, 754–763 (2010). https://doi.org/10.1557/JMR.2010.0088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0088

Navigation