Skip to main content
Log in

Plastic deformation of nanocrystalline copper-antimony alloys

  • Outstanding Symposium Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations are used to evaluate the influence of Sb dopant atoms at the grain boundaries on plastic deformation of nanocrystalline Cu. Deformation is conducted under uniaxial tensile loading, and Sb atoms are incorporated as substitutional defects at the grain boundaries. The presence of randomly dispersed Sb atoms at the grain boundaries does not appreciably influence the mechanisms associated with dislocation nucleation in nanocrystalline Cu; grain boundary ledges and triple junctions still dominate as partial dislocation sources. However, the magnitude of the tensile stress associated with the partial dislocation nucleation event does increase with increasing Sb concentration and also with increasing grain size. The flow stress of nanocrystalline Cu increases with increasing Sb concentration up to 1.0 at.% Sb, with a maximum observed at a grain size of 15 nm for all Sb concentrations (0.0–2.0 at.% Sb).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Kumar, Van H. Swygenhoven, S. Suresh Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003)

    Article  CAS  Google Scholar 

  2. J.R. Weertman Hall-Petch strengthening in nanocrystalline metals. Mater. Sci. Eng., A 166, 161 (1993)

    Article  Google Scholar 

  3. M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, E. Ma Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041 (2007)

    Article  CAS  Google Scholar 

  4. V.Y. Gertsman, R. Birringer On the room-temperature grain growth in nanocrystalline copper. Scr. Metall. Mater. 30, 577 (1994)

    Article  CAS  Google Scholar 

  5. K. Pantleon, M.A.J. Somers In situ investigation of the microstructure evolution in nanocrystalline copper electrodeposits at room temperature. J. Appl. Phys. 100, 114319 (2006)

    Article  CAS  Google Scholar 

  6. C. Detavernier, D. Deduytsche, Van R.L. Meirhaeghe, De J. Baerdemaeker, C. Dauwe Room-temperature grain growth in sputter-deposited Cu films. Appl. Phys. Lett. 82, 1863 (2003)

    Article  CAS  Google Scholar 

  7. P.C. Millett, R.P. Selvam, A. Saxena Stabilizing nanocrystalline materials with dopants. Acta Mater. 55, 2329 (2007)

    Article  CAS  Google Scholar 

  8. R. Kirchheim Grain coarsening inhibited by solute segregation. Acta Mater. 50, 413 (2002)

    Article  CAS  Google Scholar 

  9. R.K. Rajgarhia, D.E. Spearot, A. Saxena, K.T. Hartwig, K.L. More, E. Kenik, H. Meyer Microstructural stability of nanocrystalline copper with antimony dopants at grain boundaries: experiments and molecular dynamics simulations. Acta Mater. (2010 submitted )

    Google Scholar 

  10. Van H. Swygenhoven, J.R. Weertman Deformation in nanocrystalline metals. Mater. Today 9, 24 (2006)

    Article  Google Scholar 

  11. Van H. Swygenhoven, A. Caro, D. Farkas Grain boundary structure and its influence on plastic deformation of polycrystalline FCC metals at the nanoscale: A molecular dynamics study. Scr. Mater. 44, 1513 (2001)

    Article  Google Scholar 

  12. Van H. Swygenhoven, P.M. Derlet, A.G. Froseth Nucleation and propagation of dislocations in nanocrystalline fcc metals. Acta Mater. 54, 1975 (2006)

    Article  CAS  Google Scholar 

  13. Van H. Swygenhoven, P.D. Derlet Atomistic simulations of dislocations in FCC metallic nanocrystalline materials Dislocations in Solids Vol. 14 (Elsevier 2008) 1–42

    Article  Google Scholar 

  14. Van H. Swygenhoven Grain boundaries and dislocations. Science 296, 66 (2002)

    Article  Google Scholar 

  15. J. Schiotz, K.W. Jacobsen A maximum in the strength of nanocrystalline copper. Science 301, 1357 (2003)

    Article  CAS  Google Scholar 

  16. J. Schiotz Atomic-scale modeling of plastic deformation of nanocrystalline copper. Scr. Mater. 51, 837 (2004)

    Article  CAS  Google Scholar 

  17. J. Schiotz Strain-induced coarsening in nanocrystalline metals under cyclic deformation. Mater. Sci. Eng., A 375–377, 975 (2004)

    Article  CAS  Google Scholar 

  18. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat. Mater. 3, 43 (2004)

    Article  CAS  Google Scholar 

  19. P.M. Derlet, H. Van Swygenhoven Length scale effects in the simulation of deformation properties of nanocrystalline metals. Scr. Mater. 47, 719 (2002)

    Article  CAS  Google Scholar 

  20. P.M. Derlet, A. Hasnaoui, Van H. Swygenhoven Atomistic simulations as guidance to experiments: Viewpoint set No. 31. Scr. Mater. 49, 629 (2003)

    Article  CAS  Google Scholar 

  21. D. Farkas, M. Willemann, B. Hyde Atomistic mechanisms of fatigue in nanocrystalline metals. Phys. Rev. Lett. 94, 165502 (2005)

    Article  CAS  Google Scholar 

  22. Z. Pan, Y. Li, Q. Wei Tensile properties of nanocrystalline tantalum from molecular dynamics simulations. Acta Mater. 56, 3470 (2008)

    Article  CAS  Google Scholar 

  23. N.Q. Vo, R.S. Averback, P. Bellon, A. Caro Yield strength in nanocrystalline Cu during high strain rate deformation. Scr. Mater. 61, 76 (2009)

    Article  CAS  Google Scholar 

  24. N.Q. Vo, R.S. Averback, P. Bellon, S. Odunuga, A. Caro Quantitative description of plastic deformation in nanocrystalline Cu: dislocation glide versus grain boundary sliding. Phys. Rev. B: Condens. Matter 77, 134108 (2008)

    Article  CAS  Google Scholar 

  25. T. Ungar, S. Ott, P.G. Sanders, A. Borbely, J.R. Weertman Dislocations, grain size and planar faults in nanostructured copper determined by high resolution x-ray diffraction and a new procedure of peak profile analysis. Acta Mater. 46, 3693 (1998)

    Article  CAS  Google Scholar 

  26. K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, P. Wang Deformation of electrodeposited nanocrystalline nickel. Acta Mater. 51, 387 (2003)

    Article  CAS  Google Scholar 

  27. F. Mompiou, D. Caillard, M. Legros Grain boundary shear-migration coupling—I. In situ TEM straining experiments in Al polycrystals. Acta Mater. 57, 2198 (2009)

    Article  CAS  Google Scholar 

  28. C.S. Pande, R.A. Masumura Deformation and cable creep of nanocrystalline materials Nanomaterials for Structural Applications edited by C.C. Berndt, T.E. Fischer, I. Ovid’ko, G. Skandan, and T. Tsakalakos (Mater. Res. Soc. Symp. Proc 740, Warrendale, PA 2003) l1.1.

    Google Scholar 

  29. Z. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt, S.X. Mao Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654 (2004)

    Article  CAS  Google Scholar 

  30. A.S. Argon, S. Yip The strongest size. Philos. Mag. Lett. 86, 713 (2006)

    Article  CAS  Google Scholar 

  31. L. Capolungo, D.E. Spearot, M. Cherkaoui, D.L. McDowell, J. Qu, K.I. Jacob Dislocation nucleation from bicrystal interfaces and grain boundary ledges: Relationship to nanocrystalline deformation. J. Mech. Phys. Solids 55, 2300 (2007)

    Article  CAS  Google Scholar 

  32. Van H. Swygenhoven, P.M. Derlet, A.G. Froseth Stacking fault energies and slip in nanocrystalline metals. Nat. Mater. 3, 399 (2004)

    Article  CAS  Google Scholar 

  33. C.L. Kelchner, S.J. Plimpton, J.C. Hamilton Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B: Condens. Matter 58, 11085 (1998)

    Article  CAS  Google Scholar 

  34. E.O. Hall The deformation and aging of mild steel. Proc. R. Soc. London, Ser. B 64, 747 (1951)

    Article  Google Scholar 

  35. N.J. Petch Cleavage strength of polycrystals. Iron and Steel Institute Journal 174, 25 (1953)

    CAS  Google Scholar 

  36. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter Deformation mechanism crossover and mechanical behaviour in nanocrystalline materials. Philos. Mag. Lett. 83, 385 (2003)

    Article  CAS  Google Scholar 

  37. S. Jang, Y. Purohit, D. Irving, C. Padgett, D. Brenner, R.O. Scattergood Molecular dynamics simulations of deformation in nanocrystalline Al-Pb alloys. Mater. Sci. Eng., A 493, 53 (2008)

    Article  CAS  Google Scholar 

  38. S. Jang, Y. Purohit, D.L. Irving, C. Padgett, D. Brenner, R.O. Scattergood Influence of Pb segregation on the deformation of nanocrystalline Al: Insights from molecular simulations. Acta Mater. 56, 4750 (2008)

    Article  CAS  Google Scholar 

  39. J.P. Schaffer, A. Saxena, J.T.H. Sanders, Stephen D. Antolovich, S.B. Warner Science and Design of Engineering Materials (McGraw-Hill Science, Boston 2000)

    Google Scholar 

  40. V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot, H. Gleiter Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Mater. 49, 2713 (2001)

    Article  CAS  Google Scholar 

  41. G.Z. Voronoi Nouvelles applications des paramètres continus à la théorie de formes quadratiques. Reine Angew Math. 134, 199 (1908)

    Google Scholar 

  42. P.M. Derlet, Van H. Swygenhoven Atomic positional disorder in fcc metal nanocrystalline grain boundaries. Phys. Rev. B: Condens. Matter 67, 14202–1 (2003)

    Article  CAS  Google Scholar 

  43. A.G. Froseth, Van H. Swygenhoven, P.M. Derlet Developing realistic grain boundary networks for use in molecular dynamics simulations. Acta Mater. 53, 4847 (2005)

    Article  CAS  Google Scholar 

  44. J.K. Mackenzie Second paper on statistics associated with the random disorientation of cubes. Biometrika 45, 229 (1958)

    Article  Google Scholar 

  45. Dalla F. Torre, R. Lapovok, J. Sandlin, P.F. Thomson, C.H.J. Davies, E.V. Pereloma Microstructures and properties of copper processed by equal channel angular extrusion for 1-16 passes. Acta Mater. 52, 4819 (2004)

    Article  CAS  Google Scholar 

  46. Dalla F.H. Torre, A.A. Gazder, E.V. Pereloma, C.H.J. Davies Recent progress on the study of the microstructure and mechanical properties of ECAE copper. J. Mater. Sci. 42, 1622 (2007)

    Article  CAS  Google Scholar 

  47. S. Plimpton Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995)

    Article  CAS  Google Scholar 

  48. Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B: Condens. Matter 63, 224106–1 (2001)

    Article  CAS  Google Scholar 

  49. J.A. Zimmerman, H. Gao, F.F. Abraham Generalized stacking fault energies for embedded atom FCC metals. Modell. Simul. Mater. Sci. Eng. 8, 103 (2000)

    Article  CAS  Google Scholar 

  50. J.R. Rice Dislocation nucleation from a crack tip: An analysis based on the Peierls concept. J. Mech. Phys. Solids 40, 239 (1992)

    Article  CAS  Google Scholar 

  51. W.G. Hoover Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, Gen. Phys. 31, 1695 (1985)

    Article  CAS  Google Scholar 

  52. S. Melchionna, G. Ciccotti, B.L. Holian Hoover NPT dynamics for systems varying in shape and size. Mol. Phys. 78, 533 (1993)

    Article  CAS  Google Scholar 

  53. R.K. Rajgarhia, D.E. Spearot, A. Saxena Interatomic potential for copper-antimony in dilute solid-solution alloys and application to single crystal dislocation nucleation. Comput. Mater. Sci. 49, 1258 (2009)

    Article  CAS  Google Scholar 

  54. R. Hultgren, P.D. Desai, D.T. Hawkins, K. Gleiseer, K.K. Kelley Selected Values of the Thermodynamic Properties of Binary Alloys (American Society for Metals, Metals Park, OH 1973)

    Google Scholar 

  55. A. Leach Molecular Modelling: Principles and Applications (Prentice Hall 2001)

    Google Scholar 

  56. J.T. Staley Jr., A. Saxena Mechanisms of creep crack growth in 1 wt% antimony-copper: Implications for fracture parameters. Acta Metall. Mater. 38, 897 (1990)

    Article  CAS  Google Scholar 

  57. D.E. Spearot, K.I. Jacob, D.L. McDowell Dislocation nucleation from bicrystal interfaces with dissociated structure. Int. J. Plast. 23, 143 (2007)

    Article  CAS  Google Scholar 

  58. M.A. Tschopp, D.E. Spearot, D.L. McDowell Influence of grain boundary structure on dislocation nucleation in FCC metals Dislocations in Solids Vol. 14 edited by J.P. Hirth (Elsevier, London 2008) Chap. 82

  59. M.P. Allen, D.J. Tildesley Computer Simulation of Liquids (Oxford University Press 1989)

    Google Scholar 

  60. R.K. Rajgarhia, D.E. Spearot, A. Saxena Heterogeneous dislocation nucleation in single crystal copper-antimony solid-solution alloys. Modell. Simul. Mater. Sci. Eng. 17, 055001 (2009)

    Article  CAS  Google Scholar 

  61. P.C. Millett, R.P. Selvam, A. Saxena Improving grain boundary sliding resistance with segregated dopants. Mater. Sci. Eng., A 431, 92 (2006)

    Article  CAS  Google Scholar 

  62. J.C.M. Li Mechanical grain growth in nanocrystalline copper. Phys. Rev. Lett. 96, 215506–1 (2006)

    Article  CAS  Google Scholar 

  63. S.L. Frederiksen, K.W. Jacobsen, J. Schiotz Simulations of intergranular fracture in nanocrystalline molybdenum. Acta Mater. 52, 5019 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas E. Spearot.

Additional information

This paper was selected as an Outstanding Symposium Paper for the 2008 MRS Fall Meeting, Symposium W Proceedings, Vol. 1130E.

Articles in this section are based on presentations that were selected by MRS Meeting Symposium Organizers as outstanding papers. Upon selection, authors are invited to submit their research results to Journal of Materials Research. These papers are subject to the same peer review and editorial standards as all other JMR papers. This is another way by which the Materials Research Society recognizes high quality papers presented at its meetings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajgarhia, R.K., Spearot, D.E. & Saxena, A. Plastic deformation of nanocrystalline copper-antimony alloys. Journal of Materials Research 25, 411–421 (2010). https://doi.org/10.1557/JMR.2010.0072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0072

Navigation