Skip to main content
Log in

Crystal structure and optical properties of erbium- and neodymium-doped zirconia nanoparticles

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report the synthesis, characterization, and optical properties of high-temperature stable lanthanide-doped luminescent zirconia nanoparticles via a novel method using carbon black as template. Dopant concentrations were varied from 1 to 5% of Er3+ or Nd3+ and annealing temperatures were varied from 650 to 1100 °C. The effects of the dopant concentration on crystal structure and emission properties were evaluated using x-ray powder diffraction and fluorescence spectroscopy, respectively. The lanthanide cations were found to stabilize the tetragonal phase of zirconia over the monoclinic phase as dopant concentration was increased to 5%. Increasing the annealing temperature to 1100 °C had the opposite effect and was found to stabilize the monoclinic phase of zirconia. The luminescence intensity of the Nd-doped zirconia was enhanced by two orders of magnitude over the undoped or Er-doped zirconia. In all cases, the luminescence spectra revealed increasing intensity with increasing annealing temperature. Zirconia luminescence at near-infrared wavelengths is likely caused by oxygen vacancies. This work demonstrates that the spectral signatures of fluorescent zirconia nanoparticles can be modified with small lanthanide dopant concentration. These particles will have utility in fluorescent sensors and tags, as well as new in refractory materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, A.A.G. Requicha Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2, 229 (2003)

    Article  CAS  Google Scholar 

  2. H. Chander Development of nanophosphors—A review. Mater. Sci. Eng., R 49, 113 (2005)

    Article  CAS  Google Scholar 

  3. M. Nyk, R. Kumar, T.Y. Ohulchanskyy, E.J. Bergey, P.N. Prasad High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett. 8, 3834 (2008)

    Article  CAS  Google Scholar 

  4. J.C. Krupa, M. Queffelec UV and VUV optical excitations in wide band gap materials doped with rare earth ions: 4f-5d transitions. J. Alloys Compd. 250, 287 (1997)

    Article  CAS  Google Scholar 

  5. B.M. Tissue Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts. Chem. Mater. 10, 2837 (1998)

    Article  CAS  Google Scholar 

  6. R. Denning New optics—New materials. J. Mater. Chem. 11, 19 (2001)

    Article  CAS  Google Scholar 

  7. B.M. Tissue Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts. Chem. Mater. 10, 2837 (1998)

    Article  CAS  Google Scholar 

  8. M. Veith New synthetic routes to nano-composites with ceramic particles, using lanthanide compounds. J. Sol-Gel Sci. Technol. 46, 291 (2008)

    Article  CAS  Google Scholar 

  9. J-C Boyer, L.A. Cuccia, J.A. Capobianco Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Lett. 7, 847 (2007)

    Article  CAS  Google Scholar 

  10. D. Chen, Y. Wang, N. Yu, P. Huang, F. Weng Novel rare earth ions-doped oxyfluoride nano-composite with efficient upconversion white-light emission. J. Solid State Chem. 181, 2763 (2008)

    Article  CAS  Google Scholar 

  11. V. Jokanovic, M.D. Dramicanin, Z. Andric, B. Jokanovic, Z. Nedic, A.M. Spasic Luminescence properties of SiO2:Eu3+ nanopowders: Multi-step nano-designing. J. Alloys Compd. 453, 253 (2008)

    Article  CAS  Google Scholar 

  12. B.K. Moon, I.M. Kwon, J.H. Jeong, C-S Kim, S-S Yi, P.S. Kim, H. Choi, J.H. Kim Synthesis and luminescence characteristics of Eu3+-doped ZrO2 nanoparticles. J. Lumin. 122–123, 855 (2007)

    Article  CAS  Google Scholar 

  13. D. Matsuura, T. Ikeuchi, K. Soga Upconversion luminescence of colloidal solution of Y2O3 nano-particles doped with trivalent rare-earth ions. J. Lumin. 128, 1267 (2008)

    Article  CAS  Google Scholar 

  14. C-H Lu, C-H Huang, B-M Cheng Synthesis and luminescence properties of microemulsion-derived Y3Al5O12: Eu3+ phosphors. J. Alloys Compd. 473, 376 (2009)

    Article  CAS  Google Scholar 

  15. L. Chen, Y. Liu, Y. Li Preparation and characterization of ZrO2:Eu3+ phosphors. J. Alloys Compd. 381, 266 (2004)

    Article  CAS  Google Scholar 

  16. H.D.E. Harrison, N.T. McLamed, E.C. Subbarao A new family of self-activated phosphors. J. Electrochem. Soc. 110, 23 (1963)

    Article  CAS  Google Scholar 

  17. R. Reisfeld, M. Zelner, A. Patra Fluorescence study of zirconia films doped by Eu3+, Tb3+ and Sm3+ and their comparison with silica films. J. Alloys Compd. 300–301, 147 (2000)

    Article  Google Scholar 

  18. S. Gutzov, M. Lerch Optical properties of europium containing zirconium oxynitrides. Opt. Mater. 24, 547 (2003)

    Article  CAS  Google Scholar 

  19. A. Patra Effect of crystal structure and concentration on luminescence in Er3+:ZrO2 nanocrystals. Chem. Phys. Lett. 387, 35 (2004)

    Article  CAS  Google Scholar 

  20. A. Patra, C.S. Friend, R. Kapoor, P.N. Prasad Upconversion in Er3+:ZrO2 nanocrystals. J. Phys. Chem. B 106, 1909 (2002)

    Article  CAS  Google Scholar 

  21. D. Van der Voort, G. Blasse Luminescence of the europium(3+) ion in zirconium(4+) compounds. Chem. Mater. 3, 1041 (1991)

    Article  Google Scholar 

  22. F. Boulc’h, E. Djurado Structural changes of rare-earth-doped, nanostructured zirconia solid solution. Solid State Ionics 157, 335 (2003)

    Article  CAS  Google Scholar 

  23. P. Li, I.W. Chen, J.E. Penner-Hahn Effect of dopants on zirconia stabilization—An x-ray absorption study: II, Tetravalent dopants. J. Am. Ceram. Soc. 77, 1281 (1994)

    Article  CAS  Google Scholar 

  24. S.M. Ho On the structural chemistry of zirconium oxide. Mater. Sci. Eng. 54, 23 (1982)

    Article  CAS  Google Scholar 

  25. H. Zhang, X. Fu, S. Niu, Q. Xin Blue emission of ZrO2:Tm nanocrystals with different crystal structure under UV excitation. J. Non-Cryst. Solids 354, 1559 (2008)

    Article  CAS  Google Scholar 

  26. E. Eldridge Erosion-indicating thermal barrier coatings using luminescent sublayers. J. Am. Ceram. Soc. 89, 3252 (2006)

    Article  CAS  Google Scholar 

  27. M.M. Gentleman, D.R. Clarke Luminescence sensing of temperature in pyrochlore zirconate materials for thermal-barrier coatings. Surf. Coat. Technol. 200, 1264 (2005)

    Article  CAS  Google Scholar 

  28. Z. Assefa, R.G. Haire, P.E. Raison Photoluminescence and Raman studies of Sm3+ and Nd3+ ions in zirconia matrices: Example of energy transfer and host-guest interactions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 60, 89 (2004)

    Article  CAS  Google Scholar 

  29. G. Cabello, L. Lillo, C. Caro, G.E. Buono-Core, B. Chornik, M.A. Soto Structure and optical characterization of photochemically prepared ZrO2 thin films doped with erbium and europium. J. Non-Cryst. Solids 354, 3919 (2008)

    Article  CAS  Google Scholar 

  30. J.C Ronfard-Haret Electrical and luminescent properties of ZnO:Bi,Er ceramics sintered at different temperatures. J. Lumin. 104, 103 (2003)

    Article  CAS  Google Scholar 

  31. L. Armelao, G. Bottaro, M. Pascolini, M. Sessolo, E. Tondello, M. Bettinelli, A. Speghini Structure-luminescence correlations in Europium-doped sol-gel ZnO nanopowders. J. Phys. Chem. C 112, 4049 (2008)

    Article  CAS  Google Scholar 

  32. S. Djerad, B. Geiger, F.J.P. Schott, S. Kureti Synthesis of nano-sized ZrO2 and its use as catalyst support in SCR. Catal. Commun. 10, 1103 (2009)

    Article  CAS  Google Scholar 

  33. M. Tahmasebpour, A.A. Babaluo, M.K.R. Aghjeh Synthesis of zirconia nanopowders from various zirconium salts via polyacrylamide gel method. J. Eur. Ceram. Soc. 28, 773 (2008)

    Article  CAS  Google Scholar 

  34. S. Wang, X. Li, Y. Zhai, K. Wang Preparation of homodispersed nano zirconia. Powder Technol. 168, 53 (2006)

    Article  CAS  Google Scholar 

  35. R. Young The Rietveld Method (International Union of Crystallography, Oxford Science Publications, Oxford 1993)

    Google Scholar 

  36. Y. Cong, B. Li, S.M. Yue, D. Fan, X.J. Wang Effect of oxygen vacancy on phase transition and photoluminescence properties of nanocrystalline zirconia synthesized by the one-pot reaction. J. Phys. Chem. C 113, 13974 (2009)

    Article  CAS  Google Scholar 

  37. W. Zheng-Gui, S. Ling-Dong, L. Chun-Sheng, J. Xiao-Cheng, Y. Chun-Hua, T. Ye, H. Xue-Ying, J. Xin Size dependence of luminescent properties for hexagonal YBO3:Eu nanocrystals in the vacuum ultraviolet region. J. Appl. Phys. 93, 9783 (2003)

    Article  CAS  Google Scholar 

  38. B.K. Moon, J.H. Jeong, S Yi-s., S.E. Choi, P.S. Kim, H. Choi, J.H. Kim Luminous properties of Tb3+ in the ZrO2 and TiO2 nanoparticles. J. Lumin. 122–123, 873 (2007)

    Article  CAS  Google Scholar 

  39. N. Xue, X. Fan, Z. Wang, M. Wang Synthesis process and the luminescence properties of rare earth doped NaLa(WO4)2 nanoparticles. J. Phys. Chem. Solids 69, 1891 (2008)

    Article  CAS  Google Scholar 

  40. N. Wan, J. Xu, T. Lin, X. Zhang, L. Xu Energy transfer and enhanced luminescence in metal oxide nanoparticle and rare earth codoped silica. Appl. Phys. Lett. 92, 201109 (2008)

    Article  CAS  Google Scholar 

  41. W. Zheng-Gui, S. Ling-Dong, L. Chun-Sheng, J. Xiao-Cheng, Y. Chun-Hua, T. Ye, H. Xue-Ying, J. Xin Size dependence of luminescent properties for hexagonal YBO3:Eu nanocrystals in the vacuum ultraviolet region. J. Appl. Phys. 93, 9783 (2003)

    Article  CAS  Google Scholar 

  42. E. De la Rosa-Cruz, L.A. Diaz-Torres, R.A Rodriguez-Rojas, M.A Meneses-Nava, O. Barbosa-Garcia, P. Salas Luminescence and visible upconversion in nanocrystalline ZrO2:Er3+. Appl. Phys. Lett. 83, 4903 (2003)

    Article  CAS  Google Scholar 

  43. De F.S. Vicente, De A.C. Castro, De M.F. Souza, M.S. Li Luminescence and structure of Er3+ doped zirconia films deposited by electron beam evaporation. Thin Solid Films 418, 222 (2002)

    Article  Google Scholar 

  44. A.Y. Zhang, M.K. Lu, Z.S. Yang, G.J. Zhou, Y.Y. Zhou Systematic research on RE2Zr2O7 (RE = La, Nd, Eu and Y) nanocrystals: Preparation, structure and photoluminescence characterization. Solid State Sci. 10, 74 (2008)

    Article  CAS  Google Scholar 

  45. R.D. Shannon Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976)

    Article  Google Scholar 

  46. C. Zhang, C. Li, J. Yang, Z. Cheng, Z. Hou, Y. Fan, J. Lin Tunable luminescence in monodisperse zirconia spheres. Langmuir 25, 7078 (2009)

    Article  CAS  Google Scholar 

  47. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983 (1996)

    Article  CAS  Google Scholar 

  48. P. Yang, Kai Lü M., Feng C. Song, Wen S. Liu, D. Xu, Rong D. Yuan, Feng X. Cheng Preparation and tunable photoluminescence characteristics of Ni2+:SrAl2O4. Opt. Mater. 24, 575 (2003)

    Article  CAS  Google Scholar 

  49. W.F. Zhang, M.S. Zhang, Z. Yin, Q. Chen Photoluminescence in anatase titanium dioxide nanocrystals. Appl. Phys. B 70, 261 (2000)

    Article  CAS  Google Scholar 

  50. A. Zhang, Lü M., S. Wang, G. Zhou, S. Wang, Y. Zhou Novel photoluminescence of SrZrO3 nanocrystals synthesized through a facile combustion method. J. Alloys Compd. 433, L7 (2007)

    Article  CAS  Google Scholar 

  51. M.A. Lim, S.I. Seok, S.I. Hong Near infrared luminescence of Er ions in sol-gel ZnO/zirconium-oxo-alkylsiloxane nanocomposite films. Thin Solid Films 515, 2423 (2006)

    Article  CAS  Google Scholar 

  52. L. Huanrong, L. Peng, W. Yige, Z. Li, Y. Jiangbo, Z. Hongjie, L. Binyuan, S. Ulrich Preparation and luminescence properties of hybrid titania immobilized with lanthanide complexes. J. Phys. Chem. C 113, 3945 (2009)

    Article  CAS  Google Scholar 

  53. K. Lunstroot, K. Driesen, P. Nockemann, Van K. Hecke, Van L. Meervelt, C. Gorller-Walrand, K. Binnemans, S. Bellayer, L. Viau, Le J. Bideau, A. Vioux Lanthanide-doped luminescent ionogels. Dalton Trans. 298 (2009)

    Google Scholar 

  54. J.C. Pivin, A. Podhorodecki, R. Kudrawiec, J. Misiewicz Study of neodymium photoluminescence and energy transfer in silicon-based gels. Opt. Mater. 27, 1467 (2005)

    Article  CAS  Google Scholar 

  55. R. Rolli, K. Gatterer, M. Wachtler, M. Bettinelli, A. Speghini, D. Ajo Optical spectroscopy of lanthanide ions in ZnO-TeO2 glasses. Spectrochim. Acta A Mol. Biomol. Spectrosc. 57, 2009 (2001)

    Article  CAS  Google Scholar 

  56. W-K Wong, A. Hou, J. Guo, H. He, L. Zhang, W-Y Wong, K-F Li, K-W Cheah, F. Xue, T.C.W. Mak Synthesis, structure and near-infrared luminescence of neutral 3d-4f bi-metallic monoporphyrinate complexes. J. Chem. Soc., Dalton Trans. 3092 (2001)

    Google Scholar 

  57. M. Zambelli, S. Zancarli, A. Speghini, M. Bettinelli, J.A. Capobianco, F. Vetrone, J.C. Boyer Optical spectroscopy of lanthanide ions in Nb2O5–TeO2 glasses Proc. SPIE, 19th Congress of the International Commission for Optics: Optics for the Quality of Life Vol. 4829 edited by G.C. Righini and A. Consortini (The International Society for Optical Engineering, Firenze, Italy 2003) 127–128

    Google Scholar 

  58. D. Wang, Y. Li, Q. Yin, M. Wang Concentration quenching of Eu2+ in 4SrO7Al2O3:Eu2+ phosphor. J. Electrochem. Soc. 152, 15 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgana M. Trexler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trexler, M.M., Dajie, Z., Kelly, L. et al. Crystal structure and optical properties of erbium- and neodymium-doped zirconia nanoparticles. Journal of Materials Research 25, 500–509 (2010). https://doi.org/10.1557/JMR.2010.0071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0071

Navigation