Skip to main content
Log in

Low temperature sintering of nano-SiC using a novel Al8B4C7 additive

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Al8B4C7 was used as a sintering additive for the densification of nano-SiC powder. The average grain size was approximately 70 nm after sintering SiC-12.5wt% Al8B4C7 at 1550 °C. The densification rate strongly depended on the sintering temperature and the applied pressure. The rearrangement of SiC particles occurred at the initial shrinkage, while viscous flow and liquid phase sintering became important at the middle and final stage of densification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gubernat, L. Stobierski, P. Labaj Microstructure and mechanical properties of silicon carbide pressureless sintered with oxide additives. J. Eur. Ceram. Soc. 27, 781 (2007)

    Article  CAS  Google Scholar 

  2. Y.I. Lee, Y.W. Kim, M. Mitomo Effect of processing on densification of nanostructured SiC ceramics fabricated by two-step sintering. J. Mater. Sci. 39, 3801 (2004)

    Article  CAS  Google Scholar 

  3. R. Telle Boride and carbide ceramics, in Materials Science and Technology Vol. 11 edited by M.V. Swain (VCH, Weinheim, Germany 1994)

  4. T. Wang, A. Yamaguchi Synthesis of Al8B4C7 and its oxidation properties in air. J. Ceram. Soc. Jpn. 108, 375 (2000)

    Article  CAS  Google Scholar 

  5. J. Ruska, L.J. Gauckler, J. Lorenz, H.U. Rexer The quantitative calculation of SiC polytypes from measurements of x-ray diffraction peak intensities. J. Mater. Sci. 14, 2013 (1979)

    Article  CAS  Google Scholar 

  6. Standard test methods for determining average grain size, in Annual Book of ASTM Standards 2000, ASTM E 112-96 (ASTM, West Conshohocken, PA 2000)

  7. T.L. Daulton, T.J. Bernatowicz, R.S. Lewis, S. Messenger, F.J. Stadermann, S. Amari Polytype distribution of circumstellar silicon carbide: Microstructural characterization by transmission electron microscopy. Geochim. Cosmochim. Acta 67, 4743 (2003)

    Article  CAS  Google Scholar 

  8. H. Tanaka, N. Hirosaki, T. Nishimura, D.W. Shin, S.S. Park Nonequiaxial grain growth and polytype transformation of sintered a-silicon carbide and ß-silicon carbide. J. Am. Ceram. Soc. 86, 2222 (2003)

    Article  CAS  Google Scholar 

  9. H.N. Yoshimura, Da A.C. Cruz, Y. Zhou, H. Tanaka Sintering of 6H(a)-SiC and 3C(ß)-SiC powders with B4C and C additives. J. Mater. Sci. 37, 1541 (2002)

    Article  CAS  Google Scholar 

  10. J. Liu, R.M. German Rearrangement densification in liquid-phase sintering. Metall. Mater. Trans. A 32, 3125 (2001)

    Article  Google Scholar 

  11. D. Salamon, Z. Shen, P. Sajgalik Rapid formation of a-sialon during spark plasma sintering: Its origin and implications. J. Eur. Ceram. Soc. 27, 2541 (2007)

    Article  CAS  Google Scholar 

  12. Y.W. Kim, M. Mitomo, G.D. Zhan Microstructural control of liquid-phase sintered ß-SiC by seeding. J. Mater. Sci. Lett. 20, 2217 (2001)

    Article  CAS  Google Scholar 

  13. R.M. German Sintering Theory and Practice (John Wiley & Sons, Inc, New York 1996)

    Google Scholar 

  14. S.J.L. Kang Sintering-Densification, Grain Growth and Microstructure (Elsevier Butterworth-Heinmann, Oxford, UK 2005)

    Google Scholar 

  15. R. Chaim Densification mechanisms in spark plasma sintering of nanocrystalline ceramics. Mater. Sci. Eng., A 443, 25 (2007)

    Article  Google Scholar 

  16. T. Wang, A. Yamaguchi Some properties of sintered Al8B4C7. J. Mater. Sci. Lett. 19, 1045 (2000)

    Article  CAS  Google Scholar 

  17. S.H. Lee, Y. Sakka, H. Tanaka, Y. Sakka Wet processing and low temperature pressureless sintering of SiC using a novel Al3BC3 sintering additive. J. Am. Ceram. Soc. 92, 2888 (2009)

    Article  CAS  Google Scholar 

  18. Phase Diagrams for Ceramists Vol. 1 edited by E.M. Levin, C.R. Robbins, and H.F. McMurdie (The American Ceramic Society, Columbus, OH 1964)

  19. M.N. Rahaman, De L.C. Jonghe, G.W. Scherer, R.J. Brook Creep and densification during sintering of glass powder compacts. J. Am. Ceram. Soc. 70, 766 (1987)

    Article  CAS  Google Scholar 

  20. Z.J. Shen, H. Peng, M. Nygren Formidable increase in the superplasticity of ceramics in the presence of an electric field. Adv. Mater. 15, 1006 (2003)

    Article  CAS  Google Scholar 

  21. L.S. Sigl, H.J. Kleebe Core/rim structure of liquid-phase sintered silicon carbide. J. Am. Ceram. Soc. 76, 773 (1993)

    Article  CAS  Google Scholar 

  22. X.F. Zhang, Q. Yang, De L.C. Jonghe Microstructure development in hot-pressed silicon carbide: Effects of aluminum, boron, and carbon additive. Acta Mater. 51, 3849 (2003)

    Article  CAS  Google Scholar 

  23. D.R. Clarke On the equilibrium thickness of intergranular glass phases in ceramic materials. J. Am. Ceram. Soc. 70, 15 (1987)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sea-Hoon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SH., Kim, BN. & Tanaka, H. Low temperature sintering of nano-SiC using a novel Al8B4C7 additive. Journal of Materials Research 25, 471–475 (2010). https://doi.org/10.1557/JMR.2010.0057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0057

Navigation