Skip to main content
Log in

Transformation-induced plasticity in Fe-Cr-V-C

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

On the basis of the Fe84.3C4.6Cr4.3Mo4.6V2.2 high-speed tool steel, manufactured under relatively high cooling rates and highly pure conditions, a further improvement of the mechanical characteristics by slight modification of the alloy composition was attempted. For this, the alloy Fe88.9Cr4.3V2.2C4.6 was generated by elimination of Mo. By applying special preparation conditions, a microstructure composed of martensite, retained austenite, and a fine network of special carbides was obtained already in the as-cast state. This material exhibits extremely high compression strength of over 5000 MPa combined with large compression strain of more than 25% due to deformation-induced martensite formation. With this alloy a new composition of transformation-induced plasticity-assisted steels was found, which shows an extreme mechanical loading capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Krauss, F.B. Pickering, H.W. Rayson Constitution and properties of steels Materials Science and Technology edited by R.W. Cahn P. Haasen and E.J. Kramer Vol. 7 (Wiley-VCH Verlag, Weinheim, Germany 2005) 3–736

    Google Scholar 

  2. E. Scheil Über die Umwandlung des Austenits in Martensit in Eisen-Nickel-Legierungen unter Belastung. Z. Anorg. Allg. Chem. 207, 21 (1932)

    Article  CAS  Google Scholar 

  3. J.R. Patel, M. Cohen Criterion for the action of applied stress in the martensitic transformation. Acta Metall. 1, 531 (1953)

    Article  CAS  Google Scholar 

  4. T. Angel Formation of martensite in austenitic stainless steels. J. Iron Steel Inst. 177, 165 (1954)

    CAS  Google Scholar 

  5. H.K.D.H. Bhadeshia Theory of significance of retained austenite in steels.Ph.D. Thesis, University of Cambridge, Cambridge, UK 1979

    Google Scholar 

  6. P.J. Jacques, X. Cornet, P. Harlet, J. Ladrière, F. Delannay Enhancment of the mechanical properties of a low-carbon, low-silicon steel by formation of a multiphased microstructure containing retained austenite. Metall. Trans. A 29, 2383 (1998)

    Article  Google Scholar 

  7. O. Muránsky, P. Sittner, J. Zrník, E.C. Oliver In situ neutron diffraction investigation of the collaborative deformation-transformation mechanism in TRIP-assisted steels at room and elevated temperatures. Acta Mater. 56, 3367 (2008)

    Article  Google Scholar 

  8. G.B. Olson, M. Azrin Transformation behavior of TRIP steels. Metall. Trans. A 9, 713 (1978)

    Article  Google Scholar 

  9. V.F. Zackay, E.R. Parker, D. Fahr, R. Bush The enhancement of ductility in high- strength steels. Trans. Am. Soc. Met. 60, 252 (1967)

    CAS  Google Scholar 

  10. O. Matsumura, Y. Sakuma, H. Takechi TRIP and its kinetic aspects in austempered 0.4C–1.5Si–0.8Mn steel. Scr. Metall. 27, 1301 (1987)

    Article  Google Scholar 

  11. Y. Tomota, H. Tokuda, Y. Adachi, M. Wakita, N. Minakawa, A. Moriai, Y. Morii Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction. Acta Mater. 52, 5737 (2004)

    Article  CAS  Google Scholar 

  12. P.J. Jacques Transformation-induced plasticity for high strength formable steels. Curr. Opin. Solid State Mater. Sci. 8, 259 (2004)

    Article  CAS  Google Scholar 

  13. S. Kruijver, L. Zhao, J. Sietsma, E. Offermann, van N. Dijk In situ observations on the austenite stability in TRIP-steel during tensile testing Proc. International Conference on TRIP-Aided High Strength Ferrous Alloys Vol. 1 (Druck and Verlag, Mainz, Germany 2002)

  14. P.J. Jacques, Q. Furnémont, F. Lani, T. Pardoen, F. Delannay Multiscale mechanics of TRIP-assisted multiphase steels: I. Characterization and mechanical testing. Acta Mater. 55, 3681 (2007)

    Article  CAS  Google Scholar 

  15. H.K.D. BhadeshiaH. TRIP-assisted steels? ISIJ Int. 42, 1059 (2002)

    Article  Google Scholar 

  16. U. Kühn, N. Mattern, T. Gemming, U. Siegel, K. Werniewicz, J. Eckert Superior mechanical properties of FeCrMoVC. Appl. Phys. Lett. 90, 261901 (2007)

    Article  Google Scholar 

  17. R.M. Srivastava, J. Eckert, W. Löser, B.K. Dhindaw, L. Schultz Cooling rate evaluation for bulk amorphous alloys from eutectic microstructures in casting processes. Mater. Trans., JIM 43, 1670 (2002)

    Article  CAS  Google Scholar 

  18. W.B. Pearson Handbook of Lattice Spacings and Structures of Metals and Alloys Vol. 8 (Pergamon Press, London 1958)

  19. K. Werniewicz, U. Kühn, N. Mattern, B. Bartusch, J. Eckert, J. Das, L. Schultz, T. Kulik New Fe–Cr–Mo–Ga–C composites with high compressive strength and large plasticity. Acta Mater. 55, 3513 (2007)

    Article  CAS  Google Scholar 

  20. T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak Binary Alloy Phase Diagrams (ASM International, Materials Park, OH 1990)

    Google Scholar 

  21. H. Mughrabi, Gil J. Sevillano, H. Neuhäuser, C. Schwink, B. Reppich Plastic deformation and fracture of materials Materials Science and Technology edited by R.W. Cahn P. Haasen and E.J. Kramer Vol. 6 (Wiley-VCH Verlag, Weinheim, Germany 2005) 3–357

    Google Scholar 

  22. M.Y. Sherif, C. Garcia-Mateo, T. Sourmail, H.K.D.H. Bhadeshia Stability of retained austenite in TRIP-assisted steels. Mater. Sci. Technol. 20, 319 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uta Kühn.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kühn, U., Romberg, J., Mattern, N. et al. Transformation-induced plasticity in Fe-Cr-V-C. Journal of Materials Research 25, 368–374 (2010). https://doi.org/10.1557/JMR.2010.0052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0052

Navigation